U-Pb Dating and Trace Elements Composition of Hydrothermal Zircons from Jianfengling Granite, Hainan: Restriction on the Age of Hydrothermal Event and Mineralization of Baolun Gold Deposit
-
摘要: 海南抱伦金矿矿区尖峰岭岩体中的锆石可分为岩浆锆石和热液锆石.岩浆锆石无色、透明, 长柱状、无明显包裹体, U、Th含量多小于1000μg/g, 206Pb-238U年龄加权平均值为240±2.1Ma, 代表了尖峰岭岩体的结晶年龄.热液锆石呈褐色、浑浊、半透明的自形短柱状, 相对于岩浆锆石具有异常高的U、Th及微量元素含量, 其U含量最高可达30000μg/g, Th含量最高可达20000μg/g, 微量及稀土元素含量比岩浆锆石普遍高一个数量级, 且具有较高的普通Pb.LA-ICP-MS锆石U-Pb定年结果表明, 这些热液锆石的形成年龄为106~120Ma之间, 206Pb-238U年龄加权平均值为112.8±4.3Ma, 代表了热液作用的年龄, 显示该区在112~120Ma左右经历了一次强烈的热液作用, 可能与该区燕山期大规模的岩浆作用以及抱伦金矿的成矿有关.研究还表明, 对热液锆石直接进行微区原位U-Pb定年, 可用来准确测定热液作用的时间和限定热液成因金矿床的成矿时代.Abstract: Detailed studies on zircons from the Jianfengling granite in the Baolun gold deposit indicate that the zircons can be divided into magmatic and hydrothermal zircons. The magmatic zircons are colorless, transparent, prismatic, euhedral crystal with few inclusions, and have moderate U, Th contents (mostly less than 1000μg/g). LA-ICP-MS U-Pb analyses of these zircons gave a weighted mean 206Pb/238U concordia age of 240±2.1Ma, which is interpreted as the age of emplacement for the Jianfengling granite. Hydrothermal zircons are brown, translucence to opaque, and have extremely high U, Th and trace elements contents, the highest U, Th contents being 30000μg/g, 20000μg/g, respectively. Hydrothermal zircons have high common Pb contents (206Pbc=0.77%-11.0%). LA-ICP-MS U-Pb analyses of these zircons gave the age from 106 to 120Ma, with a weighted mean 206Pb/238U age of 112.8±4.3Ma, which is interpreted as the age of hydrothermal event. It is indicated that there is a strong hydrothermal process at ca. 112.8Ma, which might be related to Yanshanian magmatism in this area. Gold mineralization of Baolun gold deposit is most likely related with this hydrothermal event. U-Pb dating on hydrothermal zircons could be used to constrain the timing of hydrothermal event and constrain the timing of gold mineralization related with hydrothermal event.
-
Key words:
- Jianfengling granite /
- hydrothermal zircon /
- U-Pb dating /
- Baolun gold deposit /
- geochronology
-
图 1 海南尖峰岭岩体(b) 及抱伦金矿矿区(c) 地质简图(据丁式江等, 2001;谢才富等, 2006修改)
1.中元古代花岗岩; 2.晚二叠世二长花岗岩; 3.尖峰岭单元; 4.黑岭单元; 5.金鸡岭单元; 6.瘦岭单元; 7.晚燕山石英闪长岩; 8.晚燕山花岗岩; 9.岩脉; 10.断层; 11.抱板群戈枕村组; 12.抱板群峨文岭组; 13.奥陶系南碧沟组; 14.志留系陀烈组; 15.石炭系-二叠系; 16.白垩系; 17.第四系; 18.构造破碎带及其编号; 19.热液石英脉及含金矿石英脉; 20.已有年龄数据采样点及本文采样点和年龄; F1.九所-陵水断裂; F2.王五-文教断裂
Fig. 1. Geological sketch map of Jianfengling batholith (b) and Baolun gold deposit (c)
表 1 海南尖峰岭岩体LA-ICP-MS锆石U-Pb同位素测试结果
Table 1. Zircon U-Pb isotopic data obtained by LA-ICP-MS for Jianfengling batholith, Hainan
表 2 锆石微量元素分析结果(μg/g)
Table 2. Trace elements analyses of zircon (μg/g)
-
[1] Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192 (1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X [2] Cathles, L. M., Erendi, A. H. J., Barrie, T., 1997. How long can a hydrothermal system be sustained by a single intrusive event? Economic Geology, 92 (7-8): 766-771. doi: 10.2113/gsecongeo.92.7-8.766 [3] Chen, B. L., Ding, S. J., Li, Z. J., et al., 2001. Metallogenic age of Baolun gold deposit, Hainan Province. Geochi mica, 30 (6): 525-532 (in Chinese with English abstract). [4] Cherniak, D. J., Watson. E. B., 2001. Pb diffusion in zircon. Chemical Geology, 172 (1-2): 5-24. doi: 10.1016/S0009-2541(00)00233-3 [5] Claoué-Long, J. C., King, R. W., Kerrich, R., 1990. Archaean hydrothermal zircon in the Abitibi greenstone belt: Constraints on the timing of gold mineralisation. Earth and Planetary Science Letters, 98 (1): 109-128. doi: 10.1016/0012-821X(90)90091-B [6] Claoué-Long, J. C., King, R. W., Kerrich. R., 1992. Reply to comment by F. Corfu and D. W. Davis on "Archaean hydrothermal zircon in the Abitibi greenstone belt: Constraints on the timing of gold mineralization". Earth and Planetary Science Letters, 109 (3-4): 601-609. doi: 10.1016/0012-821X(92)90118-F [7] Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Altas of zircon textures. Reviews in Mineralogy and Geochemistry, 53: 469-500. doi: 10.2113/0530469 [8] Ding, S. J., Huang, D. X., Li, Z. J., et al., 2001. Geological features and minerialzation of the Baolun gold deposit, Hainan. Chinese Geology, 28 (5): 28-34, 18 (in Chinesewith English abstract). [9] Dubinska, E., Bylina, P., Kozlowski, A., et al., 2004. U-Pb dating of serpentinization: Hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland). Chemical Geology, 203 (3-4): 183-203. doi: 10.1016/j.chemgeo.2003.10.005 [10] Geisler, T., Pidgeon, R. T., Kurtz, R., et al., 2003a. Experimental hydrothermal alteration of partially metamict zircon. American Mineralogist, 88 (10): 1496-1513. doi: 10.2138/am-2003-1013 [11] Geisler, T., Rashwan, A. A., Rahn, M. K. W., et al., 2003b. Low-temperature hydrothermal alteration of natural metamict zircons from the eastern desert, Egypt. Mineralogical Magazine, 67 (3): 485-508. doi: 10.1180/0026461036730112 [12] Geisler, T., Zhang, M., Salje, E. K. H., 2003c. Recrystallization of almost fully amorphous zircon under hydrothermal conditions: An infrared spectroscopic study. Journal of Nuclear Materials, 320 (3): 280-291. doi: 10.1016/S0022-3115(03)00187-9 [13] Harrison, T. M., Duncan, I., McDougall, I., 1985. Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta, 49 (11): 2461-2468. doi: 10.1016/0016-7037(85)90246-7 [14] Henry, C. D., Elson, H. B., McIntosh, W. C., et al., 1997. Brief duration of hydrothermal activity at Round Mountain, Nevada, determined from 40Ar/39Ar geochronology. Economic Geology, 92 (7-8): 807-826. doi: 10.2113/gsecongeo.92.7-8.807 [15] Hodges, K. V., 1991. Pressure-temperature-time paths. Annual Review of Earth and Planetary Sciences, 19: 207-236. doi: 10.1146/annurev.ea.19.050191.001231 [16] Hoskin, P. W. O., 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69 (3): 637-648. doi: 10.1016/j.gca.2004.07.006 [17] Hoskin, P. W. O., Ireland, T. R., 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28 (7): 627-630. doi: 10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2 [18] Hoskin, P. W. O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53 (1): 27-62. doi: 10.2113/0530027 [19] Hu, F. F., Fan, H. R., Yang, J. H., et al., 2004. Mineralizing age of the Rushan lode gold deposit in the Jiaodong Peninsula: SHRIMP U-Pb dating on hydrothermal zircon. Chinese Science Bulletin, 49 (15): 1629-1636. doi: 10.1007/BF03184134 [20] Kerrich, R., King, R., 1993. Hydrothermal zircon and baddeleyite in Val-d'Or Archean mesothermal gold deposits: Characteristics, compositions, and fluid-inclusion properties, withi mplications for timing of primary gold mineralization. Canadian Journal of Earth Sciences, 30 (12): 2334-2351. doi: 10.1139/e93-203 [21] Kerrich, R., Kyser, T. K., 1994. 100 Ma timing paradox of Archean gold, Abitibi greenstone-belt (Canada): New evidence from U-Pb and Pb-Pb evaporation ages of hydrothermal zircons. Geology, 22 (12): 1131-1134. doi: 10.1130/0091-7613(1994)022<1131:MTPOAG>2.3.CO;2 [22] Lee, J. W., Williams, I. S., Ellis, D. J., 1997. Pb, U and Th diffusionin natural zircon. Nature, 390 (6656): 159-162. doi: 10.1038/36554 [23] Liu, X. M., Gao, S., Di wu, C. R., et al., 2007. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20μm spot size. Chinese Science Bulletin, 52 (9): 1257-1264. doi: 10.1007/s11434-007-0160-x [24] Liu, Y. L., Ding, S. J., Zhang, X. W., et al., 2002. Ore-forming age of the Baolun gold deposit, Ledong Country, Hainan. Geological Review, 48 (Suppl. ): 84-87 (in Chinese with English abstract). [25] Ludwig, K. R., 2003. User's manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley, CA, No4.47. [26] Martin-Martin, J. D., Tritlla, J., Cardellach, E., et al., 2006. Tectonically driven fluid flow and associated low-grade metamorphism during the Alpine compression in the eastern Iberian Chain (Spain). Journal of Geochemical Exploration, 89 (1-3): 267-270. doi: 10.1016/j.gexplo.2005.11.062 [27] Pelleter, E., Cheilletz, A., Gasquet, D., et al., 2007. Hydrothermal zircons: A tool for ion microprobe U-Pb dating of gold mineralization (Tamlalt-Menhouhou gold deposit Morocco). Chemical Geology, 245 (3-4): 135-161. doi: 10.1016/j.chemgeo.2007.07.026 [28] Ramezani, J., Dunning, G. R., Wilson, M. R., 2000. Geologic setting, geochemistry of alteration, and U-Pb age of hydrothermal zircon from the Silurian Stog'er tight gold prospect, New foundland appalachians, Canada. Exploration and Mining Geology, 9 (3-4): 171-188. doi: 10.2113/0090171 [29] Rizvanova, N. G., Levchenkov, O. A., Belous, A. E., et al., 2000. Zircon reaction and stability of the U-Pb isotope system during interaction with carbonate fluid: Experimental hydrothermal study. Contributions to Mineralogy and Petrology, 139 (1): 101-114. doi: 10.1007/s004100050576 [30] Rubatto, D., 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184 (1-2): 123-138. doi: 10.1016/S0009-2541(01)00355-2 [31] Shu, B., Wang, P. A., Dong, F. X., et al., 2006. Fluid inclusion and stableisotope studies of the Baolun gold deposit, southwestern Hainan, China. Geological Bulletin of China, 25 (7): 880-893 (in Chinese with English abstract). [32] Shu, B., Wang, P. A., Li, Z. J., et al., 2004. Research on mineralizing age of Baolun gold deposit in Hainan Province and its significance. Geoscience, 18 (3): 316-320 (in Chinese with English abstract). [33] Sinha, A. K., Wayne, D. M., Hewitt, D. A., 1992. The hydrothermal stability of zircon: Preliminary experimental and isotopic studies. Geochimica et Cosmochimica Acta, 56 (9): 3551-3560. doi: 10.1016/0016-7037(92)90398-3 [34] Watson, E. B., Cherniak, D. J., Harrison, T. M., et al. 1997. The incorporation of Pbinto zircon. Chemical Geology, 141 (1-2): 19-31. doi: 10.1016/S0009-2541(97)00054-5 [35] Wu, Y. B., Zheng, Y. F., 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49 (15): 1554-1569. doi: 10.1007/BF03184122 [36] Xie, C. F., Zhu, J. C., Ding, S. J., et al., 2006. Age and petrogenesis of the Jianfengling granite and its relationship to metallogenesis of the Baolun gold deposit, Hainan Island. Acta Petrologica Sinica, 22 (10): 2493-2508 (in Chinese with English abstract). [37] Yeats, C. J., McNaughton, N. J., Groves, D. I., 1996. SHRIMP U-Pb geochronological constraints on Archean volcanic-hosted massive sulfide and lode gold mineralization at Mount Gibson, Yilgarn craton, western Australia. Economic Geology, 91 (8): 1354-1371. doi: 10.2113/gsecongeo.91.8.1354 [38] Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28 (3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x [39] 陈柏林, 丁式江, 李中坚, 等, 2001. 海南抱伦金矿床成矿时代研究. 地球化学, 30 (6): 525-532. doi: 10.3321/j.issn:0379-1726.2001.06.004 [40] 丁式江, 黄定香, 李中坚, 等, 2001. 海南抱伦金矿地质特征及其成矿作用. 中国地质, 28 (5): 28-34, 18. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200105004.htm [41] 刘玉琳, 丁式江, 张小文, 等, 2002. 海南乐东抱伦金矿床成矿时代研究. 地质论评, 48 (增刊): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1015.htm [42] 舒斌, 王平安, 董法先, 等, 2006. 海南西南部抱伦金矿床流体包裹体及稳定同位素特征. 地质通报, 25 (7): 880-893. doi: 10.3969/j.issn.1671-2552.2006.07.016 [43] 舒斌, 王平安, 李中坚, 等, 2004. 海南抱伦金矿的成矿时代研究及其意义. 现代地质, 18 (3): 316-320. doi: 10.3969/j.issn.1000-8527.2004.03.008 [44] 谢才富, 朱金初, 丁式江, 等, 2006. 海南尖峰岭花岗岩体的形成时代、成因及其与抱伦金矿的关系. 岩石学报, 22 (10): 2493-2508. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610009.htm