• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    饱水粘性土主固结理论(续): 主固结过程粘性土含水量与时间的关系

    沈孝宇 初振环

    沈孝宇, 初振环, 2009. 饱水粘性土主固结理论(续): 主固结过程粘性土含水量与时间的关系. 地球科学, 34(5): 861-869.
    引用本文: 沈孝宇, 初振环, 2009. 饱水粘性土主固结理论(续): 主固结过程粘性土含水量与时间的关系. 地球科学, 34(5): 861-869.
    SHEN Xiao-yu, CHU Zhen-huan, 2009. Primary Consolidation Theory of Saturated Soft Clay (Continuation): The Relationship between Clay's Water Content and Time during Primary Consolidation. Earth Science, 34(5): 861-869.
    Citation: SHEN Xiao-yu, CHU Zhen-huan, 2009. Primary Consolidation Theory of Saturated Soft Clay (Continuation): The Relationship between Clay's Water Content and Time during Primary Consolidation. Earth Science, 34(5): 861-869.

    饱水粘性土主固结理论(续): 主固结过程粘性土含水量与时间的关系

    详细信息
      作者简介:

      沈孝宇(1934-), 男, 教授, 从事岩土工程及土体固结理论研究工作.E-mail: evanmarco-1981@hotmail.com

    • 中图分类号: P642

    Primary Consolidation Theory of Saturated Soft Clay (Continuation): The Relationship between Clay's Water Content and Time during Primary Consolidation

    • 摘要: 论文的前文(饱水粘性土主固结理论) 已从理论上导出粘性土“主固结比(η) ”、“极限主固结量(Sη) ”及其主固结度Uη的计算方法, 它们取决于粘性土的初始含水量和液限(WtWL) 而与固结应力p无关.作为前文的续篇, 主要是探求一维主固结过程含水量和时间(t) 的变化关系(Wt=f(t, z)).根据一维固结物理模型及假设条件建立的含水量为因变量的主固结二阶偏微分方程并通过特定的边界条件和初始条件, 利用分离变量法和三角函数正交原理解得主固结过程含水量和时间的关系式, 并获得主固结系数Θ及其时间因数Δ的新表达式, 它们在形式上与太沙基固结方程相似, 但实质内容上不一致, 前者是探索粘性土含水量变化, 后者是超静孔压u的变化, 利用新的一维主固结方程进一步导出主固结量(St), 平均主固结度(Ut) 及主固结剩余量(ΔS) 等新一组表达式, 利用工程实际数据分别计算表明新的主固结系数Θ所含的相关物理量除含水量外, 其他的物理量如渗透系数(K), 超静孔压水头高度(h1), 粘性土比重(Gs) 等都不具实质的影响.

       

    • 图  1  两相土的主固结物理模型

      a.软土(两相土) 初始状态(t=0);b.t时间排水后固结状态(t=t1); 1.固体状态(固体颗粒及结合水); 2.液态水(孔隙中的重力水); 3.排出液态水后减少的孔隙体积

      Fig.  1.  Physical model of primary consolidation on two-phase soil

      图  2  超静孔隙水压水头高度(h) 与含水量(W) 关系曲线

      Fig.  2.  Correlation curve of hydraulic head of excess pore water pressure (h) and moisture (W)

      图  3  不同初始含水量(W1) 状态下粘性土含水量与时间关系曲线

      取深港西部通道粘性土的物理性质数据: WL=50%;γs=19kN/m3; hs=9 m; Gs=2.67;γw=10 kN/m3; H=2 m; k=2.868×10-5 m/d=3.32×10-8 cm/s

      Fig.  3.  Correlation curves of moisture of soft clay (Wt) and consolidation time (t) on differentinitial moistures (W1)

      图  4  不同初始含水量(W1) 状态下粘性土固结度与时间(t) 关系曲线(粘性土的物理性质参数及计算数据同图 3)

      Fig.  4.  Correlation curves of degree of consolidation (Ut) of soft clay and consolidation time (t) on different initial moistures (W1)

      图  5  不同初始含水量(W1) 状态下粘性土主固结量(St) 与时间(t) 关系曲线(粘性土的物理性质参数及计算数据同图 3)

      Fig.  5.  Correlation curves of primary consolidation (St) and consolidation time (t) on different initial moistures (W1)

      表  1  超静孔压(h1) 不变条件下, 渗透系数(K) 与主固结系数(Θ) 的关系

      Table  1.   Relationship between the permeability coefficient and coefficient of consolidation in unchanged excess pore water pressures conditions

      表  2  渗透系数K不变条件下超静孔压(h1) 和主固结系数(Θ) 的关系

      Table  2.   Relationship between excess pore water pressures and coefficient of consolidation in unchanged permeability coefficient conditions

      表  3  渗透系数K和超静孔压(h1) 都不变条件下粘性土液限含水量WL和主固结系数的关系

      Table  3.   Relationship between liquid limit and coefficient of consolidation in unchanged permeability coefficient and excess pore water pressures conditions

    • [1] Chen, Z. Y., Zhou, J. X., Wang, H. J., 1994. Soil mechanics. Tsinghua University Press, Beijing, 143-157 (in Chinese).
      [2] Gao, D. Z., 1992. Theory and practice of soft soil foundation. China Architecture and Building Press, Beijing, 94-405 (in Chinese).
      [3] Huang, W. X., 1983. Soil engineering property. Hydrographand Electricity Press, Beijing, 138-139, 161-168 (inChinese).
      [4] Qi, Z. L., 2000. Higher mathematics. Tianjin University Press, Tianjin, 449-471 (in Chinese).
      [5] Shen, X. Y., 1985. Studies of environmental engineering geology of subsidencein cities at the Yangtze river delta and neighbouring seashore plain of China. Proceedings of27th International Geological Congress, Section17 (C17) Engineering Geology, Mosco.
      [6] Shen, X. Y., Sun, S. W., 1996. The studies of the geotechnical properties of marine muck and its improvementmethods of great area in Shenzhen, China. General Proceedings of 30 th International Geological Congress, Beijing, 126.
      [7] Shen, X. Y., Yu, F., 1999. Preliminary engineering design ofsea backfill and ground improvement of project Shenzhen-Hong Kong West Bridge Custom. Shenzhen SurveyResearch Institute, Shenzhen (in Chinese).
      [8] Shen, X. Y., Zhou, H. T., Wang, Y. Q., 2002. Comstructiondocuments design of sea backfill and ground improvement of project Shenzhen-Hong Kong West Bridge Custom. Shenzhen Survey Research Institute, Shenzhen (inChinese).
      [9] Shenzhen Survey Research Institute, et al., 2004. The reportof technical analysis of ground treat ment of projectShenzhen-Hong Kong West Bridge Custom. Shenzhen Center of Development of Land, Shenzhen, 78-104 (in Chinese).
      [10] Tang, D. X., Sun, S. W., 1987. Engineering geotechnics. Geo-logical Publishing House, Beijing, 36-41, 62-68, 70-71 (in Chinese).
      [11] Terzaghi, K., 1960. Theoretical soil mechanics. Geological Publishing House, Beijing, 266-285 (in Chinese).
      [12] Zhang, P., Zheng, J. C., 2004. Municipal engineering of Wu-huan road of Dongguan—The foundation treat ment of Xihuan road. Thesis volume of Shenzhen Municipal City Engineering Design Institute, Shenzhen, 174-185 (inChinese).
      [13] Zhao, C. G., Bai, B., Wang, Y. X., 2004. Fundamentals ofsoil mechanics. Tsinghua University Press, Beijing, 160-165 (in Chinese).
      [14] Zhe, X. S., 1998. Settlement calculation on soft ground foundation. People Communication Press, Beijing, 104-119 (in Chinese).
      [15] Zhou, H. T., Dai, J., 2002. Study of preloading foundation treatment. Thesis volume of 7th conference on ground treatment. China Water Power Press, Beijing, 8-14 (inChinese).
      [16] 陈仲颐, 周景星, 王洪瑾, 等, 1994. 土力学. 北京: 清华大学出版社, 143-157.
      [17] 高大钊, 1992. 软土地基理论与实践. 北京: 中国建筑工业出版社, 94-405.
      [18] 黄文熙, 1983. 土的工程性质. 北京: 水利电力出版社, 138-139, 161-168.
      [19] 齐植兰, 2000. 高等数学. 天津: 天津大学出版社, 449-471.
      [20] 沈孝宇, 于芳, 1999. 深港西部通道口岸场坪填海及地基处理工程初步设计. 深圳: 深圳市勘察研究院.
      [21] 沈孝宇, 周洪涛, 王勇强, 2002. 深港西部通道口岸场坪填海及地基处理工程施工图设计. 深圳: 深圳市勘察研究院.
      [22] 深圳市勘察研究院, 2004. 深港西部通道软基处理技术分析报告. 深圳: 深圳市土地开发中心出版, 78-104.
      [23] 太沙基, 1960. 理论土力学. 北京: 地质出版社, 266-285.
      [24] 唐大雄, 孙愫文, 1987. 工程岩土学. 北京: 地质出版社, 36-41, 62-68, 70-71.
      [25] 张平, 郑建昌, 2004. 东莞市五环路市政工程-西环路软基处理: 深圳市市政工程设计院论文集. 深圳: 174-185.
      [26] 赵成刚, 白冰, 王运霞, 2004. 土力学原理, 北京: 清华大学出版社, 160-165.
      [27] 折学森, 1998. 软土地基沉降计算. 北京: 人民交通出版社, 104-119.
      [28] 周洪涛, 代军, 2002. 堆载预压基处理实验研究第七届全国地基处理学术讨论会论文集. 北京: 中国水利水电出版社, 8-14.
    • 加载中
    图(5) / 表(3)
    计量
    • 文章访问数:  3351
    • HTML全文浏览量:  77
    • PDF下载量:  23
    • 被引次数: 0
    出版历程
    • 收稿日期:  2008-12-01
    • 刊出日期:  2009-09-25

    目录

      /

      返回文章
      返回