• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    Cu在TaN(111)表面团聚行为的分子动力学模拟

    陈蓓 韩波 周成冈 吴金平

    陈蓓, 韩波, 周成冈, 吴金平, 2009. Cu在TaN(111)表面团聚行为的分子动力学模拟. 地球科学, 34(4): 635-640.
    引用本文: 陈蓓, 韩波, 周成冈, 吴金平, 2009. Cu在TaN(111)表面团聚行为的分子动力学模拟. 地球科学, 34(4): 635-640.
    CHEN Bei, HAN Bo, ZHOU Cheng-gang, WU Jin-ping, 2009. A Molecular Dynamics Simulation on the Agglomeration Behavior of Cu on TaN(111) Surface. Earth Science, 34(4): 635-640.
    Citation: CHEN Bei, HAN Bo, ZHOU Cheng-gang, WU Jin-ping, 2009. A Molecular Dynamics Simulation on the Agglomeration Behavior of Cu on TaN(111) Surface. Earth Science, 34(4): 635-640.

    Cu在TaN(111)表面团聚行为的分子动力学模拟

    基金项目: 

    国家自然科学基金 20873127

    详细信息
      作者简介:

      陈蓓(1983-), 女, 硕士研究生, 主要研究方向为半导体材料及工艺的模拟设计

      通讯作者:

      吴金平, E-mail: wujp@cug.edu.cn

    • 中图分类号: O647

    A Molecular Dynamics Simulation on the Agglomeration Behavior of Cu on TaN(111) Surface

    • 摘要: 原子层沉积(ALD) 是下一代超大规模集成电路的首选工艺, 但是Cu籽晶层在阻挡层上的团聚限制了ALD工艺在半导体工业中的应用.目前对Cu在阻挡层TaN表面的团聚机理和行为还缺乏足够的理论认识, 为此利用第一性原理密度泛函理论(DFT) 对不同覆盖度下Cu原子在TaN (111) 表面的吸附能和电荷转移进行了研究, 结果显示, Cu在TaN (111) 表面的吸附强度随着Cu覆盖度的增加而减弱.利用从头算分子动力学模拟了500K温度下Cu单分子层在TaN (111) 表面的吸附动力学行为, 结果表明, 在这一典型的ALD温度下, Cu层在TaN (111) 表面发生团聚, 与实验中的观察结果相符.

       

    • 图  1  TaN (111) 表面的侧视图(a) 和俯视图(b)

      Fig.  1.  Side view (a) and top view (b) of TaN (111) surface

      图  2  分子动力学过程中的几个时间点的结构(a) 和TaN表面Cu团聚形成的孤岛的SEM照片(b) (Zhao et al., 2007)

      Fig.  2.  Snapshot of the MD trajectory (a) and SEM image of Cu islands on TaN surface (b)

      图  3  纯TaN表面(a)、TaN表面吸附Cu单层(b) 和TaN表面吸附团聚之后的Cu (c) 的电子态密度

      Fig.  3.  Electron density of states of TaN surface (a), Cu monolayer adsorbed on TaN surface (b) and Cu agglomerated on TaN surface (c)

      图  4  Cu-Cu、Cu-N和Ta-N原子间距离的距离分布函数

      Fig.  4.  Distance distribution function of Cu-Cu, Cu-N and Ta-N

      表  1  TaN (111) 表面吸附不同覆盖度的Cu原子的吸附能和电子转移

      Table  1.   Adsorption energy and electron transfer of copper on TaN (111) surface at different coverage

      表  2  TaN (111) 和WN (001) 表面作为不同吸附基底的比较

      Table  2.   Comparison between TaN (111) and WN (001) substrate

    • [1] Becker, J. S., Gordon, R. G., 2003. Diffusion barrier proper-ties of tungsten nitride fil ms grown by atomic layer dep-osition from bis (tert-butyli mido) bis (di methylamido) tungsten and ammonia. Applied Physics Letters, 82 (14): 2239-2241. doi: 10.1063/1.1565699
      [2] Besling, W. F. A., Federspiel, X., Vanypre, T., et al., 2005. Copper alloy seed integration for reliability i mprove-ment. Microelectronic Engineering, 82 (3-4): 254-260. doi: 10.1016/j.mee.2005.07.031
      [3] Guvelioglu, G. H., Ma, P., He, X., et al., 2006. First princi-ples studies on the growth of small Cu clusters and thedissociative chemisorption of H2. Physical Review B, 73 (15): 155436-155445. doi: 10.1103/PhysRevB.73.155436
      [4] Han, B., Wu, J., Zhou, C., et al., 2008. Ab initio moleculardynamics si mulation on the aggregation of a Cu mono-layer on a WN (001) surface. Journal of PhysicalChemistry C, 112 (26): 9798-9802.
      [5] Inberg, A., Shacham-Diamand, Y., Rabinovich, E., et al., 2001. Material and electrical properties of electrolessAg-Wthin fil m. J. Electron. Mater., 30 (4): 355-359. doi: 10.1007/s11664-001-0043-x
      [6] Jackson, R. L., Broadbent, E., Cacouris, T., et al., 1998. Processing andintegration of copper interconnects. Sol-id State Technology, 41 (33): 49-59.
      [7] Kaloyeros, A. E., Eisenbraun, E., 2000. Ultrathin diffusionbarriers/liners for gigascale copper metallization. Annu-al Reviewof Materials Science, 30 (1): 363-385. doi: 10.1146/annurev.matsci.30.1.363
      [8] Kim, H., Koseki, T., Ohba, T., et al., 2006. Effect of Rucrystal orientation on the adhesion characteristics of Cufor ultra-large scale integration interconnects. AppliedSurface Science, 252 (11): 3938-3942.
      [9] Kleinman, L., Bylander, D. M., 1982. Efficacious form formodel pseudopotentials. Physical Review Letters, 48 (20): 1425-1428. doi: 10.1103/PhysRevLett.48.1425
      [10] Kohn, W., 1999. Nobel lecture: Electronic structure of mat-ter-wave functions and density functionals. Reviews ofModern Physics, 71 (5): 1253-1266.
      [11] Li, B. Z., Sullivan, T. D., Lee, T. C., et al., 2004. Re liability challenges for copper interconnects. Microelectronics Reliability, 44 (3): 365-380. doi: 10.1016/j.microrel.2003.11.004
      [12] Li, Z., Gordon, R. G., Farmer, D. B., et al., 2005. Nucleationand adhesion of ALD copper on cobalt adhesion layersand tungsten nitride diffusion barriers. Electrochemica land Solid-State Letters, 8 (7): G182-G185. doi: 10.1149/1.1924929
      [13] Liu, H. T., Wu, Z. Q., 2001. Some issues of the materialphysics for ultra-large-scale integration-Cu interconnect & metallization (Ⅰ). Physics, 30 (12): 757-761 (inChinese with English abstract).
      [14] Machado, E., Kaczmarski, M., Ordejón, P., et al., 2005. First-principles analyses and predictions on the reactivi-ty of barrier layers of Ta and TaNtoward organometal-lic precursors for deposition of copper fil ms. Langmuir, 21 (16): 7608-7614. doi: 10.1021/la050164z
      [15] Murarka, S. P., Gut mann, R. J., Kaloyeros, A. E., et al., 1993. Advanced multilayer metallization schemes withcopper as interconnection metal. Thin Solid Fil ms, 236 (1-2): 257-266. doi: 10.1016/0040-6090(93)90680-N
      [16] Nicolet, M. A., 1978. Diffusion barriers in thin fil ms. ThinSolid Fil ms, 52 (3): 415-443.
      [17] Perdew, J. P., Burke, K., Ernzerhof, M., 1996. Generalizedgradient approxi mation made si mple. Physical ReviewLetters, 77 (18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
      [18] Perdew, J. P., Wang, Y., 1992. Accurate and si mple analytic representation of the electron-gas correlation energy. Physical Review B, 45 (23): 13244-13249. doi: 10.1103/PhysRevB.45.13244
      [19] Rosenberg, R., Edelstein, D. C., Hu, C. K., et al., 2000. Copper metallization for high performance silicon tech-nology. Annual Reviewof Materials Science, 30: 229-262. doi: 10.1146/annurev.matsci.30.1.229
      [20] Sai-Halasz, G., 1995. Performance trends in high-end proces-sors. Proceedings of the IEEE, 83 (1): 20-36. doi: 10.1109/5.362754
      [21] Soler, J. M., Artacho, E., Gale, J. D., et al., 2002. The SIES-TA method for ab initio order-N materials si mulation. Journal of Physics: Condensed Matter, 14 (11): 2745-2779. doi: 10.1088/0953-8984/14/11/302
      [22] Torres, J., 1995. Advanced copper interconnections for sili-con CMOS technologies. Applied Surface Science, 91 (1-4): 112-123. doi: 10.1016/0169-4332(95)00105-0
      [23] Troullier, N., Martins, J. L., 1991. Efficient pseudopotentialsfor plane-wave calculations. Physical Review B, 43 (3): 1993-2006. doi: 10.1103/PhysRevB.43.1993
      [24] Wu, J. P., Han, B., Zhou, C., et al., 2007. Density functiontheory study of copper agglomeration on the WN (001) surface. Journal of Physical Chemistry C, 111 (26): 9403-9406. doi: 10.1021/jp072907q
      [25] Zhang, W. J., Yi, W. B., Wu, J., 2006. Electromigrationin Alinterconnects and the challenges in ultra-deep submi-cron technology. Acta Physica Sinica, 55 (10): 5424-5434 (in Chinese with English abstract). doi: 10.7498/aps.55.5424
      [26] Zhao, C., T kei, Z., Haider, A., et al., 2007. Failure mecha-nisms of PVD Ta and ALD TaN barrier layers for Cucontact applications. Microelectronic Engineering, 84 (11): 2669-2674. doi: 10.1016/j.mee.2007.05.061
      [27] 刘洪图, 吴自勤, 2001. 超大规模集成电路的一些材料物理问题(Ⅰ)——Cu互连和金属化. 物理, 30 (12): 757-761. doi: 10.3321/j.issn:0379-4148.2001.12.005
      [28] 张文杰, 易万兵, 吴瑾, 2006. 铝互连线的电迁移问题及超深亚微米技术下的挑战. 物理学报, 55 (10): 5424-5434. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200610073.htm
    • 加载中
    图(4) / 表(2)
    计量
    • 文章访问数:  3676
    • HTML全文浏览量:  132
    • PDF下载量:  148
    • 被引次数: 0
    出版历程
    • 收稿日期:  2009-04-05
    • 刊出日期:  2009-07-25

    目录

      /

      返回文章
      返回