Petrogenesis of Strongly Peraluminous Granites in Markan Area, Songpan Fold Belt and Its Tectonic Implication
-
摘要: 松潘造山带广泛出露印支期后碰撞型花岗岩类, 其中包括埃达克质花岗岩类、A型花岗岩和I型花岗岩, 但目前人们对该区印支期强过铝质花岗岩尚未有深入的研究.松潘造山带马尔康花岗岩属于强过铝质花岗岩(A/CNK=1.10~1.20), 其岩石类型主要为中粒二云母花岗岩和中细粒二云母花岗岩.利用LA-ICP-MS锆石U-Pb定年方法, 获得中粒二云母花岗岩的岩浆结晶年龄为208±2Ma, 中细粒二云母花岗岩的岩浆结晶年龄为200±2Ma.马尔康强过铝质花岗岩K2O/Na2O=1.13~1.75, 富Rb、Th和U, 贫Sr、Ba、Co和Ni等元素; 稀土元素组成上显示存在强到中等的负Eu异常(Eu/Eu*=0.15~0.65);全岩初始87Sr/86Sr比值(ISr) 为0.70712~0.71137, εNd (t) =-10.36~-8.43, 锆石εHf (t) =-11.8~-1.1.地球化学和Sr-Nd-Hf同位素组成一致表明, 它们的岩浆来自于地壳物质的部分熔融, 其中中粒二云母花岗岩的源岩类型主要为地壳中的泥质岩类, 而中细粒二云母花岗岩的源岩主要为地壳中的杂砂岩类.结合松潘带的地质背景、区域构造-岩浆事件及其岩浆岩的组合分析, 印支期岩石圈拆沉作用可以用来解释马尔康强过铝质花岗岩的形成机制.在松潘带, 印支期岩石圈拆沉作用导致软流圈物质上涌, 这不仅促使了加厚下地壳物质发生部分熔融, 如松潘带印支期埃达克质和I型花岗岩浆的形成, 而且还诱发了中地壳物质的部分熔融, 如马尔康强过铝质花岗岩的形成.这表明松潘带印支期岩石圈拆沉作用已使地壳不同层次发生部分熔融作用.Abstract: In the Songpan fold belt, Indosinian post-collision granitoids, including adakitic, A-type and I-type granitoids, are widespread.However, studies on Indosinian strongly peraluminous granite in this area are rare.The Markan granites, including medium-grained two-mica granite and medium-fine grained two-mica granite, are strongly peraluminous granites with Al index (A/CNK) =1.10-1.20.By using LA-ICP-MS zircon dating method, magma crystallization ages 208±2 Ma for the medium-grained two-mica granite and 200±2 Ma for the medium-fine grained two-mica granite are obtained.Both the two-mica granites show K2O/Na2O=1.13-1.75, and are enriched in Rb, Th and U etc while depleted in Sr, Ba, Co and Ni etc.REE compositions display strongly fractionated patterns, with (La/Yb)N =6.08-51.84 and Eu/Eu*=0.15-0.65.In Sr-Nd-Hf isotopic compositions, they have initial 87Sr/86Sr ratios (ISr) of 0.707 12-0.711 37, εNd(t) values of-10.36 to-8.43 and zircon εHf(t) values of-11.8 to-1.1.Geochemical and Sr-Nd-Hf isotopic compositions suggest that the magmas for the medium-grained and medium-fine grained two-mica granites were derived from patial melting of argillaceous and greywacke sediments, respectively.According to the combined analysis of geological background, regional tectono-magmatic events and magmatism composition, Indosinian lithospheric delamination can account for the magma generation of the Markan strongly peraluminous granites.The Indosinian lithospheric delamination resulted in mantle asthenospheric upwelling, which promoted not only partial melting of the thickened lower crust (e.g.the adakitic and I-type granitoid magma gerneration), but also partial melting of the middle-lower crust (e.g.the Markan granite gerneration).This indicates that the Indosinian lithospheric delamination in the Songpan fold belt had resulted in partial melting at different levels of crust.
-
图 1 松潘构造带马尔康地区地质简图(据四川省地质矿产局, 1991,简化)
Fig. 1. Simplified geological map of Markan area in Songpan fold belt
图 4 马尔康强过铝质花岗岩SiO2-K2O图(a)和A/NK-A/CNK图(b)(据Maniar and Piccoli,1989)
Fig. 4. K2O vs.SiO2(a) and A/NK vs.A/CNK (b) diagrams of Markan strongly peraluminous granites
图 5 马尔康花岗岩原始地幔标准化的微量元素(a)和稀土元素(b)组成模式
a原始地幔数值据Sun and McDonough(1989); b.球粒陨石标准化值据Taylor and Mclennan(1985)
Fig. 5. Primative mantle normalized trace element spider diagram (a) and chondrite-normalized REE patterns (b) of Markan granites
图 6 马尔康强过铝质花岗岩εNd(t)-ISr.
松潘带东北部埃达克质岩石数据来自Zhang et al. (2006); 松潘带东南部埃达克质花岗岩和Ⅰ型花岗岩数据来自Xiao et al. (2007); 松潘带中部A型花岗岩数据来自Zhang et al. (2007); LFBS型花岗岩数据来自Healy et al. (2004)
Fig. 6. εNd(t) vs. ISr. diagram of Markan strongly peraluminous granites
图 8 马尔康强过铝质花岗岩Rb/Sr-Rb/Ba (Sylvester, 1998)
Fig. 8. Rb/Sr vs. Rb/Ba diagram of Markan strongly peraluminous granites
表 1 样品03SCZ-22和样品0701 LA-ICP-M锆石U-Pb同位素分析数据
Table 1. U-Pb zircon LA-ICP-MS chronological data of samples 03SGZ-22 and 0701
表 2 马尔康强过铝质花岗岩主量元素(%)和微量元素数据(10―6)
Table 2. Major element (%) and trace element (l0-6) data of Markan strongly peraluminous granites
表 3 马尔康强过铝质花岗岩Sr-Nd同位素组成
Table 3. Sr and Nd isotopic compositions of Markan strongly peraluminous granites
表 4 样品03SGZ22和样品0701错石LuHf同位素资料
Table 4. Zircon Lu-Hf isotopic data of samples 03SGz-22 and 0701
-
[1] Amelin, Y., Lee, D. C., Halliday, A. N., 2000. Early-Mid-dle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochim. Cosmochim. Acta, 64 (24): 4205-4225. doi: 10.1016/S0016-7037(00)00493-2 [2] Andersen, T., 2002. Correction of commonleadin U-Pb analyses that do not report204Pb. Chemical Geology, 192 (1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X [3] Barbarin, B., 1996. Genesis of the two main types of peraluminous granitoids. Geology, 24: 295-298. [4] Bellieni, G., Cavazzini, G., Fioretti, A. M., et al., 1996. The Cima di Vila (Zinsnock) intrusion, eastern Alps: Evidence for crustal melting, acid-mafic magma mingling and wall-rock fluid effects. Mineralogy and Petrology, 56 (1-2): 125-146. doi: 10.1007/BF01162660 [5] Blichert-Toft, J., Albarede, F., 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Let., 148 (1-2): 243-258. doi: 10.1016/S0012-821X(97)00040-X [6] Bolhar, R., Weaver, S. D., Whitehouse, M. J., et al., 2008. Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous separation point suite (New Zealand). Earth Planet. Sci. Lett., 268 (3-4): 312-324. doi: 10.1016/j.epsl.2008.01.022 [7] Bruguier, O., Lancelot, J. R., Malavieille, J., 1997. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Garze flysch (Central China): Provenance and tectonic correlations. Earth Planet. Sci. Lett., 152 (1-4): 217-231. doi: 10.1016/S0012-821X(97)00138-6 [8] Burchfiel, B. C., Chen, Z. L., Liu, Y. P., et al., 1995. Teconics of the Longmen Shan and adjacent regions, Central China. Inter. Geol. Review, 37 (8): 661-735. doi: 10.1080/00206819509465424 [9] Calassou, S., 1994. Étude tectonique d'une chaine de décollement: A) Tectonique Triasique et Tertiaire de la Chaine de Songpan-GarzêB). Géométrie et Cinématiquedes Déformations Dans les Prismes D accrétionSédi mentaire: Modélisation Analogique. PhD Thesis, Univ, MontpellierⅡ, 1-400. [10] Chappell, B. W., White, A. J. R., 1992. I-and S-type granitesin the Lachlan fold belt. Trans. R. Soc. Edinburgh: Earth Sci., 83: 1-26. doi: 10.1017/S0263593300007720 [11] Chu, M. F., Chung, S. L., Song, B., et al., 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34: 745-748. [12] DeBievre, P., Taylor, P. D. P., 1993. Table of the isotopic composition of the elements. Int J. Mass. Spectrom. IonProcess, 123: 149. doi: 10.1016/0168-1176(93)87009-H [13] Enkin, R. J., Yang, Z. Y., Chen, Y., et al., 1992. Paleomagnetic constraints on the geodynamic history of the major blocks of China from the Permian to the present. J. Geophysical Research, 97 (B10): 13953-13989. doi: 10.1029/92JB00648 [14] Finger, F., Roberts, M. P., Haunschmid, B., et al., 1997. Variscan granitoids of central Europe: Their typology, potential sources and tectonothermal relations. Mineralogy and Petrology, 61 (1-4): 67-96. doi: 10.1007/BF01172478 [15] Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61 (3-4): 237-269. doi: 10.1016/S0024-4937(02)00082-8 [16] Harris, N., Ayres, M., Massey, J., 1995. Geochemistry of granitic melts produced during the incongruent melting of muscovite: Implications for the extraction of Himalayan leucogranite magmas. J. Geophysical Research, 100 (B8): 15767-15777. doi: 10.1029/94JB02623 [17] Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geo-chemical characteristics of collision-zone magmatism. In: Coward, M. P., Rise, A. C., eds., Collision tecton-ics. Blackell Scientific Publications (Geological Society Special Publications), 19: 67-81. [18] Harrison, T. M., Lovera, O. M., Grove, M., 1997. New insights into the origin of two contrasting Himalayan granite belts. Geology, 25: 899-902. [19] Harrowfield, M. J., Wilson, C. J. L., 2005. Indosinian deformation of the Songpan Garzê fold belt, Northeast Tibetan plateau. J. Structural Geology, 27 (1): 101-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201601001.htm [20] Healy, B., Collins, W. J., Richards, S. W., 2004. A hybrid origin for Lachlan S-type granites: The Murrumbridgee batholith example. Lithos, 79: 197-216. [21] Hsü, K. J., Guitang, P., Seng r, A. M. C., et al., 1995. Tectonic evolution of the Tibetan plateau: A working hypothesis based on the archipelago model of orogenesis. Inter. Geol. Review, 37 (6): 473-508. doi: 10.1080/00206819509465414 [22] Hu, J. M., Meng, Q. R., Shi, Y. R., et al., 2005. SHRIM PU-Pb dating of zircons from granitoid bodies in the Songpan-Ganzi terrane and its implications. Acta Petrol. Sin., 21 (3): 867-880 (in Chinese with English ab-stract). [23] Huang, M., Maas, R., Buick, I. S., et al., 2003. Crustal response to continental collisions between the Tibet, Indian, South China and North China blocks: Geochronological constraints fromthe Songpan-Garzêorogenic belt, western China. J. Metamorphic Geology, 21 (3): 223-240. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201406004.htm [24] Ilbeyli, N., Pearce, J. A., Thirl wall, M. F., et al., 2004. Petrogenesis of collision-related plutonics in Central Anatolia, Turkey. Lithos, 72 (3-4): 163-182. doi: 10.1016/j.lithos.2003.10.001 [25] Jung, S., Mezger, K., Hoernes, S., 1998. Petrology and geochemistry of syn-to post-collisional metaluminous A-type granites: A major and trace element and Nd-Sr-Pb-O-isotope study fromthe Proterozoic Damara belt, Namibia. Lithos, 45 (1-4): 147-175. doi: 10.1016/S0024-4937(98)00030-9 [26] Liao, Z. L., Mo, X. X., Pan, G. T., et al., 2006. Petrochemistry characteristic and petrogenesis of peraluminous granite in the Tibet. Acta Geologica Sinica, 80 (9): 1329-1341 (in Chinese with English abstract). [27] Ludwig, K. R., 2001. Isoplot/Ex Version2.49: Ageochrono-logical Toolkit for Microsoft Excel. Berkeley Geochro-nology Center Special Publ, 1a: 53. [28] Maniar, P. D., Piccoli, P. M., 1989. Tectonic discrimination of granitoids. Geol. Soc. America Bull., 101: 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [29] Mattauer, M., Malavieile, J., Calassou, S., et al., 1992. La châne triasique de Songpan-Garze (Quest Sechuan et Est Tibet): une châne de plissement-décollement sur marge passive. Comptes Rendus de1Académie des Sci-ences Paris, 314: 619-626. [30] Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and cold granites?Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31: 529-532. [31] Nie, S. Y., Yin, A., Rowley, D. B., et al., 1994. Exhumation of the Dabie Shan ultra-high-pressure rocks and accumulation of the Songpan-Ganzi flysch sequence, Central China. Geology, 22: 999-1002. [32] Pamic, J., Lanphere, M. A., Belak, M., 1996. Hercynian I-type and S-type granitoids from the Slavonian mountains (southern Pannonian basin, northern Croatia). Neues Jahrbuch fuer Mineralogie. Abhandlungen, 171: 155-186. doi: 10.1127/njma/171/1996/155 [33] Patiño Douce, A. E., 1999. What do experiments tell us about relative contributions of crust and mantle to the origin of granitic magmas?In: Carstro, A., Fernandez, C., Vigneresse, J. L., eds., Understanding granites: Interg-rating new and classic techniques. Geologieal Society, Special Publications, 168: 55-75. [34] Patiño Douce, A. E., Beard, J. S., 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J. Petrology, 36 (3): 707-738. doi: 10.1093/petrology/36.3.707 [35] Patiño Douce, A. E., Harris, N., 1998. Experimental constraints on Himalayan anatexis. J. Petrology, 39 (4): 689-710. doi: 10.1093/petroj/39.4.689 [36] Patiño Douce, A. E., Johnston, A. D., 1991. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites. Contrib. Mineral. Petrol., 107 (2): 202-218. doi: 10.1007/BF00310707 [37] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrology, 25 (4): 956-983. doi: 10.1093/petrology/25.4.956 [38] Pitcher, W. S., 1983. Granite type and tectonic environment. In: Hsü, K., ed., Mountain building processes. Academic Press, London, 19-40. [39] Reid, A. J., Wilson, C. J. L., Liu, S., 2005. Structural evidence for the Permo-Triassic tectonic evolution of the Yidun arc, eastern Tibetan plateau. J. Structural Geology, 27 (1): 119-137. doi: 10.1016/j.jsg.2004.06.011 [40] Roberts, M. P., Clemens, J. D., 1993. Origin of high-potassium, talc-alkaline, I-type granitoids. Geology, 21: 825-828. [41] Roger, F., Malavieille, J., Leloup, P. H., et al., 2004. Timing of granite emplacement and cooling in the Songpan-Garze fold belt (eastern Tibetan plateau) with tectonic implications. J. Asian Earth Sci., 22 (5): 465-481. doi: 10.1016/S1367-9120(03)00089-0 [42] Searle, M. P., Parrish, R. R., Hodges, K. A., et al., 1997. Shisha Pangma leucogranite, South Tibetan Himalaya: Field relations, geochemistry age, origin, and emplacement. J. Geology, 105 (3): 295-317. doi: 10.1086/515924 [43] Sengör, A. M. C., 1987. Tectonic subdivisions and evolution of Asia. Bull. Tech. Univ. Istanbul, 40: 355-435. [44] Sengör, A. M. C., Natalin, B. A., 1996. Paleotectonics of Asia: Fragments of a synthesis. In: Yin, A., Harrison, T. M., eds., The Tectonics of Asia. Cambridge UniversityPress, New York, 486-640. [45] Sichuan Bureau of Geology and Mineral Resoures. 1991. Regional geology of Sichuan Province. Geological. Publishing House, Beijing (in Chinese). [46] Skjerlie, K. P., Johnston, A. D., 1996. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: Implications for anatexis in the deep to very deep continental crust and active continental margins. J. Petrology, 37 (3): 661-691. doi: 10.1093/petrology/37.3.661 [47] Sun, S. S., McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A. D., Norry, M. J., eds., Magmatismin the ocean basin. Blackwell Sientific Publications (Geological Society Special Pub-lications), 42: 313-346. [48] Sylvester, P. J., 1998. Post-collisional strongly peraluminous granites. Lithos, 45 (1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3 [49] Taylor, S. R., McLennan, S. M., 1985. The continentalcrust: Its composition and evolution. Blackwell Scientific Publication, Oxford, 1-132. [50] Thompson, A. B., 1999. Some time-space relationships for crustal melting and granitic intrusion at various depths. In: Castro, A., Fernóndez, C., Vigneresse, J. L., eds., Understanding granites: Integrating new and classical techniques. Geol. Soci. Spec. Pub., 168: 7-25. [51] Turner, S., Hawkesworth, C., Liu, J. Q., et al., 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364 (6432): 50-54. doi: 10.1038/364050a0 [52] Wang, X. F., Metcalfe, I., Jian, P., et al., 2000. The Jinshajiang-Ailaoshan suture zone, China: Tectonostratigaphy, age and evolution. J. Asian Earth Sci., 18 (6): 675-690. doi: 10.1016/S1367-9120(00)00039-0 [53] Watson, E. B., Harrison, T. M., 1983. Zircon saturation revisited: Temperature and composition effects in avariety of crustal magma types. Earth Planet. Sci. Lett., 64 (2): 295-304. doi: 10.1016/0012-821X(83)90211-X [54] Weislogel, A. L., 2008. Tectonostratigraphic and geochronologic constraints on evolution of the Northeast Paleotethys from the Songpan-Ganzi complex, Central China. Tectonophysics, 451 (1-4): 331-345. doi: 10.1016/j.tecto.2007.11.053 [55] White, A. J. R., Chappell, B. W., 1977. Ultrametamorphism and granitoid genesis. Tectonophysics, 43 (1-2): 7-22. doi: 10.1016/0040-1951(77)90003-8 [56] Wu, F. Y., Lin, J. Q., Wilde, S. A., et al., 2005. Nature and significance of the Early Cretaceous giantigneous event in eastern China. Earth Planet. Sci. Lett., 233 (1-2): 103-119. doi: 10.1016/j.epsl.2005.02.019 [57] Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187 (1-2): 143-173. doi: 10.1016/S0009-2541(02)00018-9 [58] Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234 (1-2): 105-126. doi: 10.1016/j.chemgeo.2006.05.003 [59] Xiao, L., Zhang, H. F., Clemens, J. D., et al., 2007. Late Triassic granitoids of the eastern margin of the Tibetan Plateau: Geochronology, petrogenesis and implicationsfor tectonic evolution. Lithos, 96 (3-4): 436-452. doi: 10.1016/j.lithos.2006.11.011 [60] Xu, Z. Q., Hou, L. W., Wang, Z. X., et al., 1992. Orogenic processes of the Songpan-Garze orogenic belt of China.Geological Publ. House,Beijing, 8-12, 65-66 (inChinese) [61] Yin, A., Harrison, T. M., 2002. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of EarthPlanet. Sci., 28: 211-280. [62] Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28 (3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x [63] Zhang, G. W., Guo, A. L., Yao, A. P., 2004. Western Qinling-Songpan continental tectonic nodein China's continental tectonics. Earth Science Frontiers (China Uni-versity of Geosciences, Beijing), 11 (3): 23-32 (inChinese with English abstract). [64] Zhang, H. F., Harris, N., Parrish, R. R., et al., 2004. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet. Sci. Let., 228 (1-2): 195-212. doi: 10.1016/j.epsl.2004.09.031 [65] Zhang, H. F., Parrish, R., Zhang, L., 2007. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan plateau: Implicationfor lithospheric delamination. Lithos, 97 (3-4): 323-335. doi: 10.1016/j.lithos.2007.01.002 [66] Zhang, H. F., Zhang, L., Harris, N., et al., 2006. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze fold belt, eastern Tibetan plateau: Constraints on petrogenesis and tectonic evolution of the basement. Contrib. Mineral. Petrol., 152 (1): 75-88. doi: 10.1007/s00410-006-0095-2 [67] Zhao, Y. J., Yuan, C., Zhou, M. F., et al., 2007. Geochemistry and petrogenesis of Laojungou and Mengtonggou granites in western Sichuan, China: Constraints on the nature of Songpan-Ganzi basement. Acta Petrol. Sin., 23 (5): 995-1006 (in Chinese with English abstract). [68] Zhou, M. F., Yan, D. P., Vasconcelos, P. M., et al., 2008. Structural and geochronological constraints on the tectono-thermal evolution of the Danba domal terrane, eastern margin of the Tibetan plateau. J. Asian EarthSci., 33 (5-6): 414-427. doi: 10.1016/j.jseaes.2008.03.003 [69] 胡健民, 孟庆任, 石玉若, 等, 2005. 松潘-甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义. 岩石学报, 21 (3): 867-880. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503027.htm [70] 廖忠礼, 莫宣学, 潘桂棠, 等, 2006. 西藏过铝花岗岩的岩石化学特征及成因探讨. 地质学报, 80 (9): 1329-1341. doi: 10.3321/j.issn:0001-5717.2006.09.009 [71] 四川省地质矿产局, 1991. 四川省区域地质志. 北京: 地质出版社, 8-12, 65-66. [72] 许志琴, 侯立炜, 王宗秀, 等, 1992. 中国松潘-甘孜造山带的造山过程. 北京: 地质出版社. [73] 张国伟, 郭安林, 姚安平, 2004. 中国大陆构造中的西秦岭-松潘大陆构造结. 地学前缘, 11 (3): 23-32. doi: 10.3321/j.issn:1005-2321.2004.03.004 [74] 赵永久, 袁超, 周美夫, 等, 2007. 川西老君沟和孟通沟花岗岩的地球化学特征、成因机制及对松潘-甘孜地体基底性质的制约. 岩石学报, 23 (5): 995-1006. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705014.htm