• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海岩石圈破裂方式与扩张过程的三维物理模拟

    孙珍 孙龙涛 周蒂 蔡东升 李绪深 钟志洪 姜建群 樊浩

    孙珍, 孙龙涛, 周蒂, 蔡东升, 李绪深, 钟志洪, 姜建群, 樊浩, 2009. 南海岩石圈破裂方式与扩张过程的三维物理模拟. 地球科学, 34(3): 435-447.
    引用本文: 孙珍, 孙龙涛, 周蒂, 蔡东升, 李绪深, 钟志洪, 姜建群, 樊浩, 2009. 南海岩石圈破裂方式与扩张过程的三维物理模拟. 地球科学, 34(3): 435-447.
    SUN Zhen, SUN Long-tao, ZHOU Di, CAI Dong-sheng, LI Xu-shen, ZHONG Zhi-hong, JIANG Jian-qun, FAN Hao, 2009. Discussion on the South China Sea Evolution and Lithospheric Breakup through 3D Analogue Modeling. Earth Science, 34(3): 435-447.
    Citation: SUN Zhen, SUN Long-tao, ZHOU Di, CAI Dong-sheng, LI Xu-shen, ZHONG Zhi-hong, JIANG Jian-qun, FAN Hao, 2009. Discussion on the South China Sea Evolution and Lithospheric Breakup through 3D Analogue Modeling. Earth Science, 34(3): 435-447.

    南海岩石圈破裂方式与扩张过程的三维物理模拟

    基金项目: 

    国家重点基础研究973计划项目 2009CB219401

    国家重点基础研究973计划项目 2007CB41170405

    中国科学院知识创新工程重要方向项目 KZCX3-SW-234-1

    国家自然科学基金项目 40406012

    国家自然科学基金项目 40876026

    国家自然科学基金项目 40576027

    详细信息
    • 中图分类号: P736

    Discussion on the South China Sea Evolution and Lithospheric Breakup through 3D Analogue Modeling

    • 摘要: 南海的形成演化一直是国内外关注的热点之一.为了揭示南海的构造演化过程, 分析对比了3组物理模拟实验.实验结果表明, 断裂样式和裂谷带的走向与岩石圈的初始热流变结构密切相关.对比模拟结果与陆缘的断层样式, 推测在张裂初期, 陆坡区比陆架区具有相对热减薄的岩石圈, 从而导致不同构造位置上发育不同的裂陷特征.受下地壳和软流圈韧性流动的影响, 断层越是靠近扩张区, 倾角变得越平缓.实验揭示, 破裂首先以点状出现, 这些点不断扩大并互相连接形成连续的扩张区.共轭边缘常具有对称的形状, 向海盆方向对凹或者对凸.当离散边界附近有刚性块体时, 扩张区域的边界会明显受到地块边缘形态的影响.通过模拟实验, 推测破裂过程可能以较粘性的方式进行.西北次海盆的发育可能是沿着中-西沙地块北缘深裂陷槽破裂的结果.

       

    • 图  1  南海及邻区主要地质构造图

      磁条带解释参考Briais et al. (1993) (黄色和绿色) 及Hsu et al. (2004) (南海东北的白色线条带); NW.西北次海盆; SW.西南次海盆; YJ.阳江凹陷; WC.文昌凹陷; KP.开平凹陷; SD.顺德凹陷; LF.陆丰凹陷; CS.潮汕凹陷

      Fig.  1.  Tectonics of the South China sea and neighbor areas

      图  2  南海南北陆缘5条解释剖面

      L1据康西栋等(1994);L3据Huang et al. (2005); L4和L5据南海海洋研究所(2000);L1.解释剖面比L1剖面水平放大了两倍, 其他的解释剖面与地震剖面基本上具相同的水平比例尺; 剖面的位置见图 1

      Fig.  2.  Five interpreted profiles on the northern and southern margins of South China sea

      图  3  正常(a) 和减薄(b) 岩石圈及刚性地块(c) 的理论(黑实线) 与实验中(虚线) 的初始流变结构剖面, 初始模型设置(d, e)

      BC.脆性地壳; DC.韧性地壳; BM.脆性地慢; DM.韧性地慢; RM.刚性地块; 缩写字母的含义在以后的图件中相同

      Fig.  3.  Initial model setup, initial strength profiles of normal, thinned and rigid massif in nature (solid line) and experiment (dash line)

      图  4  塑料底板在加载前(a) 和两期加载作用后(b, c) 的表面样式图

      在白色虚线范围内, 底板上喷洒有滑石粉.箭头指示伸展方向, 板片北部和西部的实心圆点为固定点

      Fig.  4.  Surface view of the plastic boards before (a) and after two stages of deformation (b, c)

      图  5  正常厚度均匀模型实验结果(a1、b1、c1、d1) 与相应的构造解释图(a2、b2、c2、d2) (图例下同)

      每张图片底部的伸展量为三角形所指示的区域处的伸展量, 用相同线条(虚线、实线或点线) 圈定的区域为共轭边缘, 指示符号在后面的图片中都相同

      Fig.  5.  Surface view of experiment (a1, b1, c1, d1) and with line drawings (a2, b2, c2, d2) of normal homogenous lithosphere model

      图  6  减薄的均匀模型变形结果表面图(a1、b1、c1、d1) 和解释图(a2、b2、c2、d2)

      Fig.  6.  Experimental (a1, b1, c1, d1) and interpreted (a2, b2, c2, d2) surface view of thinned homogenous lithosphere model

      图  7  正常厚度不均一模型的变形结果表面图(a1, b1) 和解释图(a2, b2)

      Fig.  7.  Experimental (a1, b1) and interpreted (a2, b2) surface view of normal inhomogeneous lithosphere

      图  8  陆缘张裂、地幔上涌及相应的流变结构变化模式

      Fig.  8.  Schematic model for the continental rifting, mantle uprising and associated rheological profiles

      图  9  南海扩张历史模式

      BB.北部湾盆地; HN.海南岛; QD.琼东南盆地; PR.珠江口盆地; TXN.台西南盆地; TX.台西盆地; ZXS.中-西沙地块; LB.礼乐地块; TW.台湾

      Fig.  9.  Schematic figure showing the spreading history of the South China sea

      表  1  实验材料与对应地质体的参数特征

      Table  1.   Parameters of the analogue materials and the natural counterpart

    • [1] Allemand, P., Brun, J. P., 1991. Width of continental riftsand rheological layering of the lithosphere. Tectono-physics, 188 (1-2): 63-69. doi: 10.1016/0040-1951(91)90314-I
      [2] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated inter-pretation of magnetic anomalies and seafloor spreadingin the South China sea: Implications for the Tertiarytectonics of Southeast Asia. J. Geophys. Res. , 98 (B4): 6299-6328. doi: 10.1029/92JB02280
      [3] Brun, J. P., Buck, R., Mcclay, K., et al., 1999. Narrow riftsversus wide rifts: Inferences for the mechanics of riftingfrom laboratory experiments. Philosophical Transac-tions: Mathematical, Physical and Engineering Sciences, 357 (1753): 695-712. doi: 10.1098/rsta.1999.0349
      [4] Carter, N. L., Tsenn, M. C., 1987. Flow properties of conti-nental lithosphere. Tectonophysics, 136 (1-2): 27-63. doi: 10.1016/0040-1951(87)90333-7
      [5] Chen, C. M., Shi, H. S., Xu, S. C., et al., 2003. The condi-tion of oil and gas reservoir formation in the East of Pearl river Mouth basin. Science Press, Beijing, 1-31 (in Chinese).
      [6] Clift, P., Lin, J., 2001. Preferential mantle lithospheric ex-tension under the South China margin. Marine and Pe-troleum Geology, 18 (8): 929-945. doi: 10.1016/S0264-8172(01)00037-X
      [7] Clift, P., Lin, J., Barckhausen, U., 2002. Evidence of lowflexural rigidity and low viscosity lower continentalcrust during continental break-up in the South Chinasea. Marine and Petroleum Geology, 19 (8): 951-970. doi: 10.1016/S0264-8172(02)00108-3
      [8] Corti, G., Bonini, M., Conticelli, S., et al., 2003. Analoguemodelling of continental extension: Areviewfocused onthe relations between the patterns of deformation andthe presence of magma. Earth-Science Reviews, 63 (3-4): 169-247. doi: 10.1016/S0012-8252(03)00035-7
      [9] Corti, G., Bonini, M., Innocenti, F., et al., 2001. Centrifugemodels simulating magma emplacement during obliquerifting. Journal of Geodynamics, 31 (5): 557-576. doi: 10.1016/S0264-3707(01)00032-1
      [10] Davy, P., Cobbold, P. R., 1991. Experiments on shorteningof a4-layer model of the continental lithosphere. Tec-tonophysics, 188 (1-2): 1-25.
      [11] Dunbar, J. A., Sawyer, D. S., 1988. Continental rifting at pre-existing lithospheric weaknesses. Nature, 333 (2): 450-452.
      [12] Gradstein, F. M., Ogg, J. G., Smith, A. G., 2004. A geologictime scale2004. Cambridge University Press, UK.
      [13] Hall, R., 2002. Cenozoic geological and plate tectonic evolu-tion of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20 (4): 353-431.
      [14] Hazebroek, H. P., Tan, D. N. K., 1993. Tertiary tectonicevolution of the NW Sabah continental margin. In: Teh, G. H., ed, Proceedings of the symposium on tectonicframework and energy resources of the western marginof Pacific basin. Bull. Geol. Soc. Malaysia, 33: 195-210.
      [15] Hsu, S. K., Yeh, Y. C., Doo, W. B., et al., 2004. New ba-thymetry and magnetic lineations identifications in thenorthernmost South China sea and their tectonic impli-cations. Marine Geophysical Researches, 25 (1-2): 29-44. doi: 10.1007/s11001-005-0731-7
      [16] Huang, C. J., Zhou, D., Sun, Z., et al., 2005. Deep crustalstructure of Baiyun sag, northern South China sea revealed fromdeep seismic reflection profile. Chinese Science Bulletin, 50 (11): 1131-1138. doi: 10.1360/04wd0207
      [17] Hutchison, C. S., 1996. The'Rajang accretionary prism' and 'Lupar Line' problem of Borneo. In: Hall, R., Blundell, D., eds, Tectonic evolution of Southeast Asia. The Geological Society of London, Special Publications, 106: 247-262.
      [18] Jin, Q. H., Li, T. G., 2000. Regional geologic tectonics of the Nansha sea area. Marine Geology & Quaternary Geology, 20 (1): 1-8 (in Chinese with English abstract).
      [19] Kang, X. D., Zhao, W. C., Pan, Z. G., et al., 1994. Study onarchitecture of sequence stratigraphic framework of Beibuwan basin. Earth Science-Journal of China University Geosciences, 19 (4): 493-502 (in Chinese with English abstract).
      [20] Keep, M., 2003. Physical modelling of deformation in the Tasman orogenic zone. Tectonophysics, 375 (1-4): 37-47. doi: 10.1016/j.tecto.2003.06.002
      [21] Kirby, S. H., 1983. Rheology of the lithosphere. Rev. Geo-phys. Space Phys. , 21 (6): 1458-1487.
      [22] Li, P. L., 1994. Structural features and oil-and-gas accumula-tion in Peal River Mouth basin. Guangdong Geology, 9 (4): 21-28 (in Chinese with English abstract).
      [23] Lin, A. T., Watts, A. B., Hesselbo, S. P., 2003. Cenozoic stratigraphy and subsidence history of the South Chinasea margin in the Tai wan region. Basin Research, 15 (4): 453-478. doi: 10.1046/j.1365-2117.2003.00215.x
      [24] Lu, B. Q., Xu, G. Q., Wang, H. G., et al., 2002. Sea floor spreading recorded by drowning events of Cenozoic car-bonate platforms in the South China sea. Chinese Journal of Geology, 37 (4): 405-414 (in Chinese with Eng-lish abstract).
      [25] Mart, Y., Dauteuil, O., 2000. Analogue experiments of prop-agation of oblique rifts. Tectonophysics, 316 (1-2): 121-132. doi: 10.1016/S0040-1951(99)00231-0
      [26] Pubellier, M., Cobbold, P. R., 1996. Analogue models for thetranspressional docking of volcanic arcs in the western Pacific. Tectonophysics, 253, doi: 10:0040-1951.
      [27] Qin, G. Q., 2000. Investigation to the stratigraphy and con-struction of the comprehensive geologic columnar sec-tion of Cenozoic formationin Pearl River Mouth basin. China Offshore Oil and Gas (Geology), 14 (1): 21-28 (in Chinese with English abstract).
      [28] Ranalli, G., 1995. Rheology of the earth (2nd edition). Chap-man & Hall, London, 413.
      [29] Ranalli, G., Murphy, D. C., 1987. Rheological stratificationof the lithosphere. Tectonophysics, 132 (4): 281-295. doi: 10.1016/0040-1951(87)90348-9
      [30] Ru, K., 1988. The development of a superimposed basin onthe northern margin of the South China sea and its tectonic significance. Oil & Gas (Geology), 9 (1): 22-31.
      [31] Shao, L., Lei, Y. C., Pang, X., et al., 2005. Tectonic evolu-tion and its controlling for sedimentary environment in Pearl River Mouth basin. Journal of Tongji University (Natural Science) (China), 33 (9): 1177-1181 (in Chinese with English abstract).
      [32] Shao, L., Li, X. H., Wang, P. X., 2004. Sedimentary recordof the tectonic evolution of the South China sea sincethe Oligocene-Evidence from deep sea sediments ofODP site1148. Advance in Earth Sciences, 19 (4): 539-544 (in Chinese with English abstract).
      [33] Sims, D., Ferrill, D. A., Stamatakos, J. A., 1999. Role of aductile decollement in the development of pull-apart basins: Experimental results and natural examples. Journal of Structural Geology, 21 (5): 533-554. doi: 10.1016/S0191-8141(99)00010
      [34] South China Sea Institute of Oceanology, 2000. Tectonic evo-lution and dynamics of the Nansha area (Dangerousground) in South China sea. Research Report of'95'National I mportant Scientific Project (in Chinese).
      [35] Sun, Z., Pang, X., Zhong, Z. H., et al., 2005. Dynamics of Tertiary tectonic evolution of the Baiyun sag in the Pearl river Mouth basin. Earth Science Frontiers, 12 (4): 489-498 (in Chinese with English abstract).
      [36] Sun, Z., Zhong, Z. H., Zhou, D., et al., 2006. Research on the dynamics of the South China sea opening: Evidence from analogue modeling. Science in China (Ser. D), 49 (10): 1053-1069. doi: 10.1007/s11430-006-1053-6
      [37] Tapponnier, P., Peltzer, G., Armijo, R., 1986. On the mechanics of the collision between India and Asia. The Geological Society London, Special Publications, 19 (1): 113. doi: 10.1144/GSL.SP.1986.019.01.07
      [38] Taylor, B., Hayes, D. E., 1983. Origin and history of the South China sea basin. In: Hayes, D. E., ed., The tectonic and geologic evolution of Southeast Asian seas andislands. American Geophysical Union Geophysical Monograph Series, 27: 23-56.
      [39] Tommasi, A., Vauchez, A., 2001. Continental rifting parallelto ancient collisional belts: An effect of the mechanicalanisotropy of the lithospheric mantle. Earth and Planetary Science Letters, 185: 199-210. doi: 10.1016/S0012-821X(00)00350-2
      [40] Tron, V., Brun, J. P., 1991. Experiments on oblique riftinginbrittle-ductile systems. Tectonophysics, 188 (1-2): 71-84. doi: 10.1016/0040-1951(91)90315-J
      [41] Versfelt, J., Rosendahl, B. R., 1989. Relationships betweenpre-rift structure and rift architecture in Lakes Tangan-yika and Malawi, East Africa. Nature, 337: 354-357. doi: 10.1038/337354a0
      [42] Xie, W. Y., Sun, Z., Zhang, Y. W., et al., 2007. The fault activity of Qiongdongnan basin andits kinematic analysis. Marine Geology and Quaternary Geology, 27 (1): 71-78 (in Chinese with English abstract).
      [43] Xie, X. N., Muller, R. D., Li, S. T., et al., 2006. Origin ofanomalous subsidence along the northern South China Sea margin and its relationship to dynamic topography. Marine and Petroleum Geology, 23 (7): 745-765. doi: 10.1016/j.marpetgeo.2006.03.004
      [44] Yang, Z., Besse, J., 1993. Paleomagnetic study of Permianand Mesozoic sedimentary rocks from northern Thai-land supports the extrusion model for Indochina. Earthand Planetary Science Letters, 117 (3-4): 525-552. doi: 10.1016/0012-821X(93)90101-E
      [45] Yao, B. C., Wan, L., Liu, Z. H., et al., 2004. Tectonic dynamics of Cenozoic sedimentary basins and hydrocarbon resources in the South China sea. Earth Science-Journal of China University of Geosciences, 29 (5): 543-549 (in Chinese with English abstract).
      [46] Zhang, Q. M., Hao, F., 1997. Evolution and petroleum sys-temof the Ying-Qiong basin. Sciences in China (Ser. D), 27 (5): 149-154.
      [47] Zhang, Y. F., Sun, Z., Zhou, D., et al., 2007. The Cenozoicstretching feature of the northern continental margin of South China sea and its dynamic significance. Science in China (Ser. D), 37 (12): 1-8 (in Chinese).
      [48] Zhong, Z. H., 2000. The dynamics and hydrocarbon accumu-lation of Ying-Qiong basin, west of South China sea[Dissertation]. Nanjing University, Nanjing (in Chinese).
      [49] Zhou, D., Ru, K., Chen, H. Z., 1995. Kinematics of Cenozoicextension on the South China sea continental marginand its implications for the tectonic evolution of the region. Tectonophysics, 251 (1-4): 161-177. doi: 10.1016/0040-1951(95)00018-6
      [50] Ziegler, P. A., Cloetingh, S., 2004. Dynamic processes controlling evolution of rifted basins. Earth-Science Reviews, 64 (1-2): 1-50. doi: 10.1016/S0012-8252(03)00041-2
      [51] 陈长民, 施和生, 许世策, 等, 2003. 珠江口盆地(东部) 第三系油气藏形成条件. 北京: 科学出版社.
      [52] 金庆焕, 李唐根, 2000. 南沙海域区域地质构造. 海洋地质与第四纪地质, 20 (1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200001000.htm
      [53] 康西栋, 赵文翠, 潘治贵, 等, 1994. 北部湾盆地层序地层格架及其内部构成. 地球科学—中国地质大学学报, 19 (4): 493-502. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199404013.htm
      [54] 李平鲁, 1994. 珠江口盆地构造特征与油气聚集. 广东地质, 9 (4): 21-28.
      [55] 吕炳全, 徐国强, 王红罡, 等, 2002. 南海新生代碳酸盐台地淹没事件记录的海底扩张. 地质科学, 37 (4): 405-414. doi: 10.3321/j.issn:0563-5020.2002.04.003
      [56] 南海海洋研究所, 2000. 南海南沙地区构造演化与动力学. "95"国家重大科学项目研究报告.
      [57] 秦国权, 2000. 珠江口盆地新生代地层问题讨论及综合柱状剖面图编制. 中国海上油气(地质), 14 (1): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200001004.htm
      [58] 邵磊, 李献华, 汪品先, 等, 2004. 南海渐新世以来构造演化的沉积记录—ODP1148站深海沉积物中的证据. 地球科学进展, 19 (4): 539-544. doi: 10.3321/j.issn:1001-8166.2004.04.008
      [59] 邵磊, 雷永昌, 庞雄, 等, 2005. 珠江口盆地构造演化及对沉积环境的控制作用. 同济大学学报(自然科学版), 33 (9): 1177-1181. doi: 10.3321/j.issn:0253-374X.2005.09.007
      [60] 孙珍, 庞雄, 钟志洪, 等, 2005. 珠江口盆地白云凹陷新生代构造演化动力学. 地学前缘, 12 (4): 489-498. doi: 10.3321/j.issn:1005-2321.2005.04.018
      [61] 孙珍, 钟志洪, 周蒂, 等, 2006. 南海的发育机制研究—相似模拟证据. 中国科学(D辑), 36 (9): 797-810. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200609001.htm
      [62] 谢文彦, 孙珍, 张一伟, 等, 2007. 琼东南盆地断裂构造特征与成因机制分析. 海洋地质与第四纪地质, 27 (1): 71-78.
      [63] 姚伯初, 万玲, 刘振湖, 等, 2004. 南海海域新生代沉积盆地构造演化的动力学特征及其油气资源. 地球科学—中国地质大学学报, 29 (5): 543-549. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200405006.htm
      [64] 张云帆, 孙珍, 周蒂, 等, 2007. 南海北部陆缘新生代地壳减薄特征及其动力学意义. 中国科学(D辑), 37 (12): 1609-1616. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200712007.htm
      [65] 钟志洪, 2000. 南海西部莺琼盆地构造形成机制与油气聚集研究[博士论文]. 南京: 南京大学.
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  3791
    • HTML全文浏览量:  70
    • PDF下载量:  56
    • 被引次数: 0
    出版历程
    • 收稿日期:  2008-12-21
    • 刊出日期:  2009-05-25

    目录

      /

      返回文章
      返回