Application of P-A Fractal Model for Characterizing Distributions of Pyrrhotites in Seven Layers of Basalts in Gejiu District, Yunnan, China
-
摘要:
微观尺度上土壤孔隙、岩石孔洞缝、矿物组构的分形与多重分形研究受到广泛关注, 典型的P-A (周长-面积) 分形模型、盒子维数等也广泛应用于其中.云南个旧锡多金属矿床老厂期北山垂向上七段玄武岩发育完整, 但对其形成机理及对成矿的贡献有较多的争议.这七层玄武岩中磁黄铁矿广泛发育.基于GIS的P-A分形模型研究磁黄铁矿颗粒的大小、颗粒的不规则性及空间分布特征, 探讨磁黄铁矿这一标志性矿物在不同层段玄武岩中的变化情况, 并为玄武岩的成因给出新的解释.结合盒子维数, 分形分析结果显示, 从第一段玄武岩到第七段玄武岩磁黄铁矿的面积分维DA和周长分维DP总体保持不变的态势; 而周长-面积分维DPA却有逐渐增大的趋势.DPA增大表明随着深度的增加, 磁黄铁矿颗粒不规则性增强.
Abstract:The study on micro-pores of soils, pore-fracture-holes of sedimentary rocks and microstructures of minerals at different scales has attracted more and more attention.Typical fractal models, including P-A and box-counting methods, have also been used for such kind of studies.Basalts from seven sections in Laochang deposit, Yunnan Province, are well developed, but their forming processes and their contributions to deposits of Sn and other metals are still in issue.Based on the GIS-based P-A and box-counting fractal models, this paper focuses on the size distribution and irregularity analysis of pyrrhotites of the basalts.Three parameters DA (fractal dimension of area), DPA (fractal dimension of area and perimeter) and DP (fractal dimension of perimeter) of pyrrhotite are calculated.The results show that, from the first-section basalt to the seventh-section basalt, with the depth of rock body increasing, the values of DA and DP change a little, but the value of DPA shows an increasing trend.This indicates that the shapes of pyrrhotites become more and more irregular as the depth increases, probably due to the increase of temperature and pressure.
-
Key words:
- fractal model /
- micro-texture /
- basalt
-
表 1 云南个旧期北山七段玄武岩特征
Table 1. Properties of seven layers of basalts in Qibeishan of Gejiu district, Yunnan Province
表 2 各段玄武岩中磁黄铁矿颗粒的计盒维数
Table 2. Box-counting dimension of pyrrhotite grains in different basalts
表 3 七段玄武岩中磁黄铁矿对应的平均分维值
Table 3. Different fractal dimensions of pyrrhotite in seven basalts
-
[1] Cheng, Q. M., 1995. The peri meter-area fractal model anditsapplication to geology. Math. Geol. , 27 (1): 69-82. doi: 10.1007/BF02083568 [2] Cheng, Q. M., 2001. GIS-based statistical and fractal/multifractal analysis of surface stream patterns in the Oak Ridges-Moraine. Computers & Geosciences, 27 (5): 513-526. https://www.academia.edu/73827132/GIS_based_statistical_and_fractal_multifractal_analysis_of_surface_stream_patterns_in_the_Oak_Ridges_Moraine [3] Cheng, Q. M., Agterberg, F. P., Ballantyne, S. B., 1994. Theseparation of geochemical anomalies from backgroundby fractal methods. Journal of Geochemical Exploration, 51 (2): 109-130. doi: 10.1016/0375-6742(94)90013-2 [4] Ding, B. H., Li, W. C., Wang, F. M., 1999. Analysis of fractal image and design of fractal dimension calculationprogram. Journal of University of Science and Technology Beijing, 21 (3): 304-307 (in Chinese with Eng-lish abstract). https://www.sciencedirect.com/science/article/pii/S1877705812022618 [5] Goodchild, M. F., 1988. Lakes on fractal surfaces: A null hypothesis for lake-rich landscapes. Math. Geol. , 20 (6): 615-630. doi: 10.1007/BF00890580 [6] Gulbin, Y. L., Evangulova, E. B., 2003. Morphometry of quartz aggregates in granites: Fractal images referring to nucleation and growth processes. Math. Geol. , 35 (7): 819-833. doi: 10.1023/B:MATG.0000007781.90498.5e [7] Li, Y. S., Qin, D. X., Dang, Y. T., 2006. Lithological featuresof basalt in Gejiu eastern area, Yunnan Province. Science & Technology Review, 24 (02): 70-72 (in Chinesewith English abstract). [8] Li, Y. S., Qin, D. X., Hong, T., et al., 2007. The orecontrolling of basalt of the Indo-Chinese epoch in eastern Gejiu, Yunnan Province. Nonferrous Metals (Mining Section), 59 (1): 26-29 (in Chinese with Englishabstract). [9] Lovejoy, S., 1982. Area-peri meter relation for rain and cloudareas. Science, 216 (4542): 185-187. doi: 10.1126/science.216.4542.185 [10] Mandelbrot, B. B., 1982. The fractal geometry of nature. W. H. Freeman, New York, 468. [11] Mandelbrot, B. B., 1983. The fractal geometry of nature (updated and augmented edition). W. H. Freeman, New York, 468. [12] Mandelbrot, B. B., Passoja, D. E., Paullay, A. J., 1984. Fractal character of fracture surfaces of metals. Nature, 308 (5961): 721-722. doi: 10.1038/308721a0 [13] Wang Z. J. Cheng Q. M. Xia Q. L. 2005. The P-A fractal model characterizing microstructure of minerals. In: Cheng Q. M. et al. eds. Proceedings of IAMG'05: GIS and spatial analysis. China University of Geosciences Press, Wuhan 317-322. [14] Wang, Z. J., Cheng, Q. M., 2006. Characterization of microtexture of quartz mylonite deformation process usingfractal P-A model. Earth Science-Journal of China University of Geosciences, 31 (3): 361-365 (in Chinese with English abstract). [15] Wang, Z. J., Cheng, Q. M., Li, C., et al., 2007. Fractal modelling of the microstructure property of quartz mylonite during deformation process. Math. Geol. , 39 (1): 53-68. doi: 10.1007/s11004-006-9065-5 [16] Wang, Z. J., Cheng, Q. M., Xu, D. Y., et al., 2008. Fractal modeling of sphalerite banding in Jinding Pb-Zn deposit, Yunnan, southwestern China. Journal of China University of Geosciences, 19 (1): 77-84. doi: 10.1016/S1002-0705(08)60027-8 [17] Zhang, Z., Mao, H., Cheng, Q. M., 2001. Fractal geometryof element distribution on mineral surfaces. Math. Geol. , 33 (2): 217-228. doi: 10.1023/A:1007587318807 [18] Zuo R. Cheng Q. M. Xia Q. L. et al. 2008. Application of fractal models to distinguish between different mineral phases. Mathematical Geosciences, DOI: 10.1007/s11004-008-9191-3. [19] 丁保华, 李文超, 王福明, 1999. 分形图像分析与分形维数计算程序的设计. 北京科技大学学报, 21 (3): 304-307. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD199903024.htm [20] 黎应书, 秦德先, 党玉涛, 2006. 云南个旧东区玄武岩岩石学特征. 科技导报, 24 (02): 70-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB200602026.htm [21] 黎应书, 秦德先, 洪托, 等, 2007. 个旧东区印支期玄武岩的控矿作用. 有色金属(矿山部分), 59 (1): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU200701006.htm [22] 王志敬, 成秋明, 2006. P-A分形模型定量度量糜棱岩变形过程中石英微结构的变化. 地球科学——中国地质大学学报, 31 (3): 361-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603011.htm