• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    矿物微观结构的多重分形

    谢淑云 成秋明 李增华 邢细涛 陈守余

    谢淑云, 成秋明, 李增华, 邢细涛, 陈守余, 2009. 矿物微观结构的多重分形. 地球科学, 34(2): 263-269.
    引用本文: 谢淑云, 成秋明, 李增华, 邢细涛, 陈守余, 2009. 矿物微观结构的多重分形. 地球科学, 34(2): 263-269.
    XIE Shu-yun, CHENG Qiu-ming, LI Zeng-hua, XING Xi-tao, CHEN Shou-yu, 2009. Assessing Microstructures of Ore-Minerals by Multifractal. Earth Science, 34(2): 263-269.
    Citation: XIE Shu-yun, CHENG Qiu-ming, LI Zeng-hua, XING Xi-tao, CHEN Shou-yu, 2009. Assessing Microstructures of Ore-Minerals by Multifractal. Earth Science, 34(2): 263-269.

    矿物微观结构的多重分形

    基金项目: 

    国家自然科学基金项目 40502029

    国家自然科学基金项目 40525009

    国家自然科学基金项目 40638041

    国家自然科学基金项目 40872195

    详细信息
      作者简介:

      谢淑云(1976-), 女, 博士, 副教授, 从事地球化学与数学地质学研究.E-mail: tinaxie2006@gmail.com

    • 中图分类号: P628

    Assessing Microstructures of Ore-Minerals by Multifractal

    • 摘要:

      分形与多重分形已广泛地应用于不同领域, 不同尺度下的各种分布特征研究更是受到广泛关注.以云南个旧松树脚矿田中2件含矿矽卡岩样品中黄铁矿颗粒为研究对象, 通过分形与多重分形方法研究了黄铁矿颗粒在二维空间上的分布特征.结果显示, 黄铁矿在微观尺度空间上的分布不均一, 具有明显的分形与多重分形分布特征.所选研究区外接触带黑绿色含硫化物矿石矽卡岩和接触带矽卡岩型块状硫化物矿石显微照片分析结果显示, 前者黄铁矿颗粒分布的盒子维数D0、信息维数D1、关联维数D2及广义多重分形维数Dq的变化范围均较小, 而后者较大; 前者外接触带黑绿色含硫化物矿石矽卡岩含矿性相对较弱, 而后者矿石矿物相对富集.从这个意义上说, 分形与多重分形维数与样品含矿性有一定的对应关系, 因此, 分形与多重分形分析有望进一步为岩石含矿性的定量化评价提供微观尺度上的证据.

       

    • 图  1  矽卡岩中黄铁矿矿石的光学显微照片

      a, b.外接触带黑绿色含硫化物矿石矽卡岩样品Sk1-2中黄铁矿显微照片P1和P2;c, d.对应接触带矽卡岩型块状硫化物矿石样品Sk1-3中的胶状黄铁矿显微照片P3和P4

      Fig.  1.  Photographs of pyrites in skarn rocks

      图  2  数字图像识别技术处理黄铁矿的显微图像过程

      a为图 1a的灰度图像; b为提取黄铁矿颗粒矢量图

      Fig.  2.  The image recognition processes of the photographs of pyrites based on MATLAB

      图  3  分形维数D0估计

      图a—d分别为图 1中对应矿石矿物空间分布分维估计结果

      Fig.  3.  Estimations of fractal dimension D0 using the multifractal analysis

      图  4  广义分形维数Dq估计结果示意图

      Fig.  4.  Sketch map of Dq in the calculated spectra obtained with regression

      图  5  黄铁矿颗粒分布的多重分形谱示意图

      Fig.  5.  Sketch map of multifractal spectra for the space distribution of pyrites at microscales

      表  1  黄铁矿颗粒微观分布特征的分形参数

      Table  1.   Fractal parameters describing the spatial microstructures of pyrite particles

    • [1] Allegre, C. J., Lewin, E., 1995. Scaling laws and geochemical distribution. Earth Planet. Sci. Letters, 132 (1-4): 1-13. doi: 10.1016/0012-821X(95)00049-I
      [2] Blenkinsop, T. G., 1994. The fractal distribution of gold deposits: Two examples from the Zimbabwe Archaean craton. In: Kruhl, J. H., ed., Fractals and dynamic systemsin geosciences. Springer, Berlin, 247-258.
      [3] Carlson, C. A., 1991. Spatial distribution of ore deposits. Geology, 19 (2): 111-114. doi: 10.1130/0091-7613(1991)019<0111:SDOOD>2.3.CO;2
      [4] Chen, Y. Q., Zhang, S. Y., Xia, Q. L., et al., 2006. Application of multi-fractal filtering to extraction of geochemical anomalies from multi-geochemical backgrounds: A case study of the southern section of "Sanjiang ore-forming zone", southwestern China. Earth Science—Journal of China University of Geosciences, 31 (6): 861-866 (in Chinese with English abstract).
      [5] Chen, Z. J., 2007. Multifractal theory based local singularity analysis method and its application in spatial information extraction for mineral exploration (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [6] Cheng, Q. M., 2005. Multiplicative cascade mineralization processes and singular distribution of mineral deposit associated geochemical anomalies. Proceedings of IAMG'05: GIS and spatial analysis. China University of Geosciences Press, Wuhan, 297-302.
      [7] Cheng, Q. M., 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32 (1-2): 314-324. doi: 10.1016/j.oregeorev.2006.10.002
      [8] Cheng, Q. M., Agterberg, F. P., Ballantyne, S. B., 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51 (2): 109-130. doi: 10.1016/0375-6742(94)90013-2
      [9] Cheng, Q. M., Agterberg, F. P., Bonham-Carter, G. F., 1996. A spatial analysis method for geochemical anomaly separation. Journal of Geochemical Exploration, 56 (3): 183-195. doi: 10.1016/S0375-6742(96)00035-0
      [10] Evertsz, C. J. G., Mandelbrot, B. B., 1992. Multifractal measures (Appendix B). In: Peitgen, H. O., Jurgens, H., Saupe, D., eds., Chaos and fractals. Springer Verlag, New York, 922-953.
      [11] Gulbin, Y. L., Evangulova, E. B., 2003. Morphometry of quartz aggregates in granites: Fractal images reference to nucleation and growth processes. Mathematical Geology, 35 (7): 819-833. doi: 10.1023/B:MATG.0000007781.90498.5e
      [12] Guo, K., Shi, Z. J., Tang, J. X., et al., 2004. Study chemical elements' inter growth combination with multi-fractals. Journal of University of Electronic Science and Technology of China, 33 (2): 221-224 (in Chinese with English abstract).
      [13] Katz, A. J., Thompson, A. H., 1985. Fractal sandstone pore: Implication for conductivity and pore formation. Phy. Rev. Lett. , 54 (12): 1325-1328. doi: 10.1103/PhysRevLett.54.1325
      [14] Lovejoy, S., 1982. Area-perimeter relation for rain and cloud areas. Science, 216 (4542): 185-187. doi: 10.1126/science.216.4542.185
      [15] Lu, Q., Liu, H. F., 2001. Fraction-dimensional time-spatial structure of multi-metallic deposit in Shizhuyuan: Mineralized Sn and other elements in garnet as an example. Earth Science—Journal of China University of Geosciences, 26 (2): 123-128 (in Chinese with English abstract).
      [16] Mandelbrot, B. B., 1977. Fractals: Form, chance and dimension. W. H. Freeman, San Francisco.
      [17] Muller, J., McCauley, J. L., 1992. Implication of fractal geometry for fluid flow properties of sedimentary rocks. Transp. Porous Media, 8: 133-147. doi: 10.1007/BF00617114
      [18] Peng, S. L., Ouyang, H., Wang, L., et al., 2006. Mechanism of multi-genetic and compound metallogenesis of Sn-Cu polymetallic deposits in the Gejiu ore district. Mineral Deposits, 25 (Suppl.): 363-366 (in Chinese with English abstract).
      [19] Shen, W., 2005. n-dimentional self-affine fractal and its application in geochemistry. Geological Review, 51 (2): 208-211 (in Chinese with English abstract).
      [20] Shen, W., Zhao, P. D., 2002. Multidimensional self-affine distribution with application in geochemistry. Mathematical Geology, 34 (2): 109-123. doi: 10.1023/A:1014489800680
      [21] Tan, K. X., Liu, S. S., Xie, Y. S., 2000. Multifractal analysis of ore deposits distribution in Alty Xinjiang, China. Geotectonicaet Metallogenia, 24 (4): 333-341 (in Chinese with English abstract).
      [22] Turcotte, D. L., 1992. Fractals and chaos in geology and geophysics. Cambridge University Press.
      [23] Turcotte, D. L., 2002. Fractals in petrology (in non-linear and chaotic dynamics in igneous petrology). Lithos, 65 (3-4): 261-271. doi: 10.1016/S0024-4937(02)00194-9
      [24] Vidal, V. E., Garca, M. R., Miranda, J. G. V., et al., 2008. Assessing soil surface roughness decay during simulated rainfall by multifractal analysis. Nonlinear Processes in Geophysics, 15 (3): 457-468. doi: 10.5194/npg-15-457-2008
      [25] Vistelius, A. B., 1960. The skew frequency distributions and the fundamental law of the geochemical processes. Journal Geology, 68 (1): 1-22. doi: 10.1086/626634
      [26] Vistelius, A. B., 1987. Ideal granites and models of their metasomatic transformations: Theory, experience, and current problems. Mathematical Geology, 19 (7): 589-612. doi: 10.1007/BF00897571
      [27] Wang, Z. J., 2008. GIS-based fractal/multifractal modeling of texture in mylonites and banded sphalerite ores: [Dissertation]. York University, Toronto, Canada, 288.
      [28] Wang, Z. J., Cheng, Q. M., 2006. Characterization of microtexture of quartz myionite deformation process using fractal P-A model. Earth Science—Journal of China University of Geosciences, 31 (3): 361-365 (in Chinese with English abstract).
      [29] Wang, Z. J., Cheng, Q. M., Xia, Q. L., 2005. The P-A fractal model characterizing microstructure of minerals. Proceedings of IAMG'05: GIS and spatial analysis. China University of Geosciences, Wuhan, 317-322.
      [30] Wang, Z. J., Cheng, Q. M., Xu, D. Y., et al., 2008. Fractal modeling of sphalerite banding in Jinding Pb-Zn deposit, Yunnan, southwestern China. Journal of China University of Geosciences, 19 (1): 77-84. doi: 10.1016/S1002-0705(08)60027-8
      [31] Xie, S., Bao, Z., 2004. Fractal and multifractal properties of geochemical fields. Mathematical Geology, 36 (7): 847-864. doi: 10.1023/B:MATG.0000041182.70233.47
      [32] Xie, X. J., Yin, B. C., 1993. Geochemical patterns from local to global. Exploration Geochemical, 47 (1-3): 109-130. doi: 10.1016/0375-6742(93)90061-P
      [33] Xu, D. Y., Cheng, Q. M., Wang, Z. J., 2007. CNN modeling for the periodic banding texture of sphalerite. Proceedings of the IAMG'07: Geomathematics and GIS analysis of resources, environment and hazards. China University of Geosciences Press, Wuhan, 224-226.
      [34] Xu, D. Y., Cheng, Q. M., Wang, Z. J., 2009. Simulation of Liesegang band in sphalerite in MVT deposits. Earth Science—Journal of China University of Geosciences, 34 (2): 253-257 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.023
      [35] Xu, D. Y., Ke, X. Z., Xie, S. Y., et al., 2008. Scaling properties of feldspar and quartzin micro-images of ideal granites. Journal of China University of Geosciences, 19 (4): 327-333. doi: 10.1016/S1002-0705(08)60065-5
      [36] Yu, C. W., 2003. Complexity in geologic system. Science Press, Beijing, 1135 (in Chinese).
      [37] Zhang, Z., Mao, H., Cheng, Q. M., 2001. Fractal geometry of element distribution on mineral surfaces. Mathematical Geology, 33 (2): 217-228. doi: 10.1023/A:1007587318807
      [38] 陈永清, 张生元, 夏庆霖, 等, 2006. 应用多重分形滤波技术提取致矿地球化学异常: 以西南"三江"南段Cu、Zn致矿异常提取为例. 地球科学——中国地质大学学报, 31 (6): 861-866. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200606016.htm
      [39] 陈志军, 2007. 多重分形局部奇异性分析方法及其在矿产资源信息提取中的应用(博士学位论文). 武汉: 中国地质大学.
      [40] 郭科, 施泽进, 唐菊兴, 等, 2004. 用多重分形研究元素的共生组合. 电子科技大学学报, 33 (2): 221-224. doi: 10.3969/j.issn.1001-0548.2004.02.028
      [41] 陆琦, 刘慧芳, 2001. 柿竹园多金属矿床的分形时-空结构: 以矽卡岩矿物中Sn等成矿元素分布特征为例. 地球科学——中国地质大学学报, 26 (2): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200102004.htm
      [42] 彭省临, 欧阳恒, 王力, 等, 2006. 个旧矿集区锡铜多金属多因复成成矿机制. 矿床地质, 25 (增刊): 363-366. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2006S1097.htm
      [43] 申维, 2005. n维自仿射分形及其在地球化学中的应用. 地质论评, 51 (2): 208-211. doi: 10.3321/j.issn:0371-5736.2005.02.015
      [44] 谭凯旋, 刘顺生, 谢焱石, 2000. 新疆阿尔泰地区矿床分布的多重分形分析. 大地构造与成矿学, 24 (4): 333-341. doi: 10.3969/j.issn.1001-1552.2000.04.006
      [45] 王志敬, 成秋明, 2006. P-A分形模型定量度量糜棱岩变形过程中石英微结构的变化. 地球科学——中国地质大学学报, 31 (3): 361-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603011.htm
      [46] 徐德义, 成秋明, 王志敬, 2009. MVT型矿床中闪锌矿结晶的Liesegang环带模拟. 地球科学——中国地质大学学报, 34 (2): 253-257. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902003.htm
      [47] 於崇文, 2003. 地质系统的复杂性. 北京: 科学出版社, 1135.
    • 加载中
    图(5) / 表(1)
    计量
    • 文章访问数:  3650
    • HTML全文浏览量:  123
    • PDF下载量:  64
    • 被引次数: 0
    出版历程
    • 收稿日期:  2008-11-15
    • 刊出日期:  2009-03-25

    目录

      /

      返回文章
      返回