Application of Singularity Theory in Prediction of Tin and Copper Mineral Deposits in Gejiu District, Yunnan, China: Information Integration and Delineation of Mineral Exploration Targets
-
摘要:
在致矿弱异常提取和复合异常分解的基础上, 进行多元信息综合和集成, 绘制成矿后验概率图是矿床资源预测的基本过程.以个旧锡矿为例, 介绍一种新的信息集成模型和后验概率图的应用方法.结果表明, 个旧锡铜矿床分布受多个控矿要素控制, 包括地球化学异常、岩体、有利岩性以及构造条件等.通过证据权所提供的空间相关性统计量可以定量确定控矿要素的最佳控矿距离, 并以此为依据形成二态信息图层.对每个图层的叠加可看作一次找矿信息的累积和更新, 因此整个信息图层的集成过程可以看作多次信息叠加过程(multiplicative cascade process).由此绘制的后验概率图具有自相似性、奇异性和分形谱系, 空间分布服从多重分形统计分布.因此, 后验概率图的绘制可以作为致矿地质异常圈定的信息综合和集成方法.
Abstract:This paper is based on several research projects conducted in Gejiu Sn and Cu mineral districts on regional mineral resource assessment, 3D mineral resource assessment and prediction of deeply buried mineral deposits.New non-linear theory and methods of multifractal singularity have been applied in these projects to map weak anomalies related to deeply buried ores and mineralization halos.The weights of evidence model with corrected posterior probability using a newly developed correction method is applied to integrate various geo-evidential layers to map mineral potentials in the Gejiu area.The binary evidential layers include two layers defined on the basis of geochemical data, with one on distance from intersection of faults and the other on Gejiu Formation.Each addition of a binary layer can be considered as a partition of the study area and redistribution of posterior probability which can be treated as a general multiplicative cascade process and the final product may show multifractal properties with multiple singularities.A power-law model was established between posterior probability and undiscovered mineral deposits for the area.
-
-
[1] Agterberg, F. P., 1989. Computer programs for mineral exploration. Science, 245: 76-81. doi: 10.1126/science.245.4913.76 [2] Agterberg, F. P., Cheng, Q. M., 2002. Conditional independence test for weights of evidence modeling. Natural Resources Research, 11 (4): 249-255. doi: 10.1023/A:1021193827501 [3] Bonham-Carter, G. F., 1994. Geographic information systemsfor geoscientists: Modelling with GIS. Pergamon, Ox-ford, 398. [4] Cheng, Q. M., 2000. GeoData analysis system (GeoDAS) for mineral exploration: User's guide and exercise manual. Material for the training workshop on GeoDAS held at York University, Nov. 1to3, 2000.204. www.gisworld.org/geodas. [5] Cheng, Q. M., 2004. Quantifying the generalized self-similarity of spatial patterns for mineral resources assessment. Earth Science—Journal of China University of Geosciences, 29 (6): 733-744 (in Chinese with English abstract). [6] Cheng, Q. M., 2007a. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32 (1-2): 314-324. doi: 10.1016/j.oregeorev.2006.10.002 [7] Cheng, Q. M., 2007b. Geological anomaly as fundamental characteristic of singular mineralization processes. In: Zhao, P. D., Agtergerg, F., Cheng, Q. M., eds., Proceedings of IAMG'07: Geomathematics and GIS analysis of resources, environment and hazards, held in Beijing, China, August26-31, 2007. China University of Geosciences Press, Wuhan, 786-788. [8] Cheng, Q. M., 2007c. Multifractal imaging filtering and decomposition methods in space, Fourier frequency andeigen domains. Nonlin. Processes Geophys., 14: 293-303. doi: 10.5194/npg-14-293-2007 [9] Cheng, Q. M., 2007d. GIS based fractal/multifractal anomaly analysis for modeling and prediction of mineralization and mineral deposits. In: Harris, J., Wright, D., eds., GIS for geosciences. Geological Association of Canada, 285-296. [10] Cheng, Q. M., 2007e. Singular mineralization processes and mineral resources quantitative prediction: New theories and methods. Earth Science Frontiers, 14 (5): 42-53 (in Chinese with English abstract). [11] Cheng, Q. M., 2008a. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. Mathematical Geosciences, DOI 10.1007/s11004-008-9172-6. [12] Cheng, Q. M., 2008b. Singularity of mineralization and multifractal distribution of mineral deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 27 (3): 298-305 (in Chinese with English abstract). [13] Cheng, Q. M., Agterberg, F. P., 1999. Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8 (1): 27-35. doi: 10.1023/A:1021677510649 [14] Cheng, Q. M., Agterberg, F. P., 2008. Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Computers & Geosciences, DOI: 10.1016/j.ca-geo.2008.02.034. [15] Cheng, Q. M., Agterberg, F. P., Bonham-Carter, G. F., 1996. A spatial analysis method for geochemical anomaly separation. Journal of Exploration Geochemistry, 56 (3): 183-195. doi: 10.1016/S0375-6742(96)00035-0 [16] Cheng, Q. M., Bonham-Carter, G. P., 2005. GIS and spatial analysis. Proceedings of IAMG2005. International Association for Mathematical Geology, 1345. [17] Cheng, Q. M., Zhao, P. D., Chen, J. G., et al., 2009. Application of singularity theoryin prediction of tin and copper mineral deposits in Gejiu district, Yunnan, China: Weak information extraction and mixing information decomposition. Earth Science—Journal of China University of Geosciences, 34 (2): 232-242 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.021 [18] Journel, A. G., 2002. Combining knowledge from diverse sources: An alternative to traditional data independence hypotheses. Mathematical Geology, 34 (5): 573-596. doi: 10.1023/A:1016047012594 [19] Qin, D. X., Tan, S. C., Fan, Z. G., et al., 2004. Geotectonic evolution and tin-polymetallic metallogenesis in GejiuDachang area. Acta Mineralogica Sinica, 24 (2): 118-123 (in Chinese with English abstract). [20] Southwestern Metallurgy Exploration Company of the Ministry of Metallurgy Industry, 1984. Geology of Gejiu mineral district. Metallurgy Industry Press, Beijing (in Chinese). [21] Tan, S. C., Qin, D. X., Chen, A. B., et al., 2004. Regional crust evolution and metallogenesis of Gejiu tin deposit—A discussion. Acta Mineralogica Sinica, 24 (2): 157-163 (in Chinese with English abstract). [22] Thiart, C., Bonham-Carter, G. F., Agterberg, F. P., et al., 2007. An application of the new Omnibus test for conditional independence in weights-of-evidence modeling. In: Harris, J., Wright, D., eds., GIS for geosciences. Geological Association of Canada, 132-142. [23] Xia, Q. L., Zhang, S. T., Chen, S. Y., et al., 2007. The key problems for deep mineral potential assessment in Gejiu tin deposit, Yunnan, China. Acta Mineralogica Sinica, 27 (Suppl.): 530-531 (in Chinese with English abstract). [24] Xu, Q. D., Xia, Q. L., Cheng, Q. M., 2009. Tectono-magmatic evolution related to metallogenic systemin Gejiu oreconcentration area, Southeast Yunnan of China. Earth Science—Journal of China University of Geosciences, 34 (2): 307-313 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.032 [25] Yu, C. W., Tang, Y. J., Shi, P. F., et al., 1988. Dynamic system of Gejiu polymetallic mineralization processes. China University of Geosciences Press, Wuhan, 394 (in Chinese). [26] Zhang, S. Y., Wu, Q., Cheng, Q. M., et al., 2006. Weights of evidence method based on fuzzy training layer and its application in desertification assessment. Earth Science—Journal of China University of Geosciences, 31 (3): 389-393 (in Chinese with English abstract). [27] Zhang, S. T., Xia, Q. L., Zhao, P. D., et al., 2008. Diversity of mineralization and spectrum of the Gejiu superlarge tin-copper polymetallic deposit, Yunnan, China. Journal of China University of Geosciences, 19 (4): 363-370. doi: 10.1016/S1002-0705(08)60069-2 [28] Zhao, P. D., 2002. "Three-component" quantitative resource prediction and assessment: Theory and practice of digital mineral prospecting. Earth Science—Journal of China University of Geosciences, 27 (5): 482-489 (in Chinese with English abstract). [29] Zhao, P. D., Cheng, Q. M., Xia, Q. L., 2008. Quantitative prediction for deep mineral exploration. Journal of China University of Geosciences, 19 (4): 309-318. doi: 10.1016/S1002-0705(08)60063-1 [30] 成秋明, 2004. 空间模式的广义自相似性分析与矿产资源评价. 地球科学——中国地质大学学报, 29 (6): 733-744. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200406012.htm [31] 成秋明, 2007e. 成矿过程奇异性与矿产预测定量化的新理论与新方法. 地学前缘, 14 (5): 42-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200705006.htm [32] 成秋明, 2008b. 成矿过程奇异性与矿床多重分形分布. 矿物岩石地球化学通报, 27 (3): 298-305. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200803014.htm [33] 成秋明, 赵鹏大, 陈建国, 等, 2009. 奇异性理论在个旧锡铜矿产资源预测中的应用: 成矿弱信息提取和复合信息分解. 地球科学——中国地质大学学报, 34 (2): 232-242. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902001.htm [34] 秦德先, 谈树成, 范柱国, 等, 2004. 个旧-大厂地区地质构造演化及锡多金属成矿. 矿物学报, 24 (2): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200402004.htm [35] 谈树成, 秦德先, 陈爱兵, 等, 2004. 个旧锡矿区域地壳演化与成矿探讨. 矿物学报, 24 (2): 157-163. doi: 10.3321/j.issn:1000-4734.2004.02.011 [36] 夏庆霖, 张寿庭, 陈守余, 等, 2007. 云南个旧锡矿深部资源潜力评价的几个关键问题. 矿物学报, 27 (增刊): 530-531. [37] 徐启东, 夏庆霖, 成秋明, 2009. 云南个旧矿集区区域构造-岩浆演化与锡铜多金属成矿系统. 地球科学——中国地质大学学报, 34 (2): 307-313. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902013.htm [38] 冶金工业部西南冶金地质勘探公司, 1984. 个旧锡矿地质. 北京: 冶金工业出版社. [39] 於崇文, 唐元骏, 石平方, 等, 1988. 云南个旧锡多金属成矿区内生成矿作用的动力学体系. 武汉: 中国地质大学出版社, 394. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199105013.htm [40] 张生元, 武强, 成秋明, 等, 2006. 基于模糊预测对象的证据权方法及其在土地沙漠化评价中的应用. 地球科学——中国地质大学学报, 31 (3): 389-393. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603016.htm [41] 赵鹏大, 2002. "三联式"资源定量预测与评价——数字找矿理论与实践探讨. 地球科学——中国地质大学学报, 2 (5): 482-489. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205001.htm