• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    奇异性理论在个旧锡铜矿产资源预测中的应用: 综合信息集成与靶区圈定

    成秋明 赵鹏大 张生元 夏庆霖 陈志军 陈建国 徐德义 王文磊

    成秋明, 赵鹏大, 张生元, 夏庆霖, 陈志军, 陈建国, 徐德义, 王文磊, 2009. 奇异性理论在个旧锡铜矿产资源预测中的应用: 综合信息集成与靶区圈定. 地球科学, 34(2): 243-252.
    引用本文: 成秋明, 赵鹏大, 张生元, 夏庆霖, 陈志军, 陈建国, 徐德义, 王文磊, 2009. 奇异性理论在个旧锡铜矿产资源预测中的应用: 综合信息集成与靶区圈定. 地球科学, 34(2): 243-252.
    CHENG Qiu-ming, ZHAO Peng-da, ZHANG Sheng-yuan, XIA Qing-lin, CHEN Zhi-jun, CHEN Jian-guo, XU De-yi, WANG Wen-lei, 2009. Application of Singularity Theory in Prediction of Tin and Copper Mineral Deposits in Gejiu District, Yunnan, China: Information Integration and Delineation of Mineral Exploration Targets. Earth Science, 34(2): 243-252.
    Citation: CHENG Qiu-ming, ZHAO Peng-da, ZHANG Sheng-yuan, XIA Qing-lin, CHEN Zhi-jun, CHEN Jian-guo, XU De-yi, WANG Wen-lei, 2009. Application of Singularity Theory in Prediction of Tin and Copper Mineral Deposits in Gejiu District, Yunnan, China: Information Integration and Delineation of Mineral Exploration Targets. Earth Science, 34(2): 243-252.

    奇异性理论在个旧锡铜矿产资源预测中的应用: 综合信息集成与靶区圈定

    基金项目: 

    国家杰出青年科学研究基金项目 40525009

    国家自然科学基金重点项目 40638041

    国家863项目 2006AA06Z115

    教育部创新团队基金 IRT0755

    地质调查项目 121201063390110

    详细信息
      作者简介:

      成秋明(1960-), 男, 教授, 博士生导师, 教育部长江学者特聘教授, 国家杰出青年基金获得者, 国际数学地球科学协会最高奖———克伦宾奖章获得者, 主要从事矿产普查与勘探、数学地质、地理信息系统以及矿产资源评价的教学和研究. E-mail: qiuming@cug.edu.cn

    • 中图分类号: P628

    Application of Singularity Theory in Prediction of Tin and Copper Mineral Deposits in Gejiu District, Yunnan, China: Information Integration and Delineation of Mineral Exploration Targets

    • 摘要:

      在致矿弱异常提取和复合异常分解的基础上, 进行多元信息综合和集成, 绘制成矿后验概率图是矿床资源预测的基本过程.以个旧锡矿为例, 介绍一种新的信息集成模型和后验概率图的应用方法.结果表明, 个旧锡铜矿床分布受多个控矿要素控制, 包括地球化学异常、岩体、有利岩性以及构造条件等.通过证据权所提供的空间相关性统计量可以定量确定控矿要素的最佳控矿距离, 并以此为依据形成二态信息图层.对每个图层的叠加可看作一次找矿信息的累积和更新, 因此整个信息图层的集成过程可以看作多次信息叠加过程(multiplicative cascade process).由此绘制的后验概率图具有自相似性、奇异性和分形谱系, 空间分布服从多重分形统计分布.因此, 后验概率图的绘制可以作为致矿地质异常圈定的信息综合和集成方法.

       

    • 图  1  采用证据权方法确定的控矿要素二态图层

      Fig.  1.  Binary patterns obtained by using weights of evidence method

      图  2  采用证据权方法计算矿床空间分布与构造交汇点距离的相关关系

      图中给出了小于某一阀值的区域与矿床的分布关系; t为学生统计量, 大小反映相关性的显著性.最佳距离确定为6km

      Fig.  2.  Plot showing the relationship between the distance from the intersections of faults and t-value calculated using weights of evidence method

      图  3  布格重力异常处理结果

      a.重力上延3km并同时做垂向二阶导数处理; b.重力上延7km并同时做垂向二阶导数处理.图中暗色多边形表示岩体的出露范围

      Fig.  3.  Results of processing and interpreting gravity anomaly

      图  4  锡铜矿床预测后验概率图

      采用证据权校正模型和4个证据图层(地球化学异常Ⅰ和Ⅱ、个旧组地层、构造交汇点距离) 为输入; 模型范围1688个面积单元, 11个矿床单元(由圆圈符号表示); 先验概率为0.65%

      Fig.  4.  Posterior probability map calculated from integrating four evidential layers in Figs. 1a to 1d

      图  5  证据权校正模型

      a.实际观察后验概率与计算后验概率的关系图; b.校正前后模型.累积面积与后验概率满足分形分布(power-law); 三角形表示观察的后验概率

      Fig.  5.  Corrected weights of evidence model

      图  6  研究区矿床数预测模型

      预测矿床数是预测后验概率的函数.采用图中模型可以计算在不同的概率意义下的预测矿床数, 如图中数据显示的在后验概率分别为1/10000、1/1000、1/100、1/10意义下的预测矿床数分别为30、17、10、6

      Fig.  6.  Prediction model for undiscovered mineral deposits

    • [1] Agterberg, F. P., 1989. Computer programs for mineral exploration. Science, 245: 76-81. doi: 10.1126/science.245.4913.76
      [2] Agterberg, F. P., Cheng, Q. M., 2002. Conditional independence test for weights of evidence modeling. Natural Resources Research, 11 (4): 249-255. doi: 10.1023/A:1021193827501
      [3] Bonham-Carter, G. F., 1994. Geographic information systemsfor geoscientists: Modelling with GIS. Pergamon, Ox-ford, 398.
      [4] Cheng, Q. M., 2000. GeoData analysis system (GeoDAS) for mineral exploration: User's guide and exercise manual. Material for the training workshop on GeoDAS held at York University, Nov. 1to3, 2000.204. www.gisworld.org/geodas.
      [5] Cheng, Q. M., 2004. Quantifying the generalized self-similarity of spatial patterns for mineral resources assessment. Earth Science—Journal of China University of Geosciences, 29 (6): 733-744 (in Chinese with English abstract).
      [6] Cheng, Q. M., 2007a. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32 (1-2): 314-324. doi: 10.1016/j.oregeorev.2006.10.002
      [7] Cheng, Q. M., 2007b. Geological anomaly as fundamental characteristic of singular mineralization processes. In: Zhao, P. D., Agtergerg, F., Cheng, Q. M., eds., Proceedings of IAMG'07: Geomathematics and GIS analysis of resources, environment and hazards, held in Beijing, China, August26-31, 2007. China University of Geosciences Press, Wuhan, 786-788.
      [8] Cheng, Q. M., 2007c. Multifractal imaging filtering and decomposition methods in space, Fourier frequency andeigen domains. Nonlin. Processes Geophys., 14: 293-303. doi: 10.5194/npg-14-293-2007
      [9] Cheng, Q. M., 2007d. GIS based fractal/multifractal anomaly analysis for modeling and prediction of mineralization and mineral deposits. In: Harris, J., Wright, D., eds., GIS for geosciences. Geological Association of Canada, 285-296.
      [10] Cheng, Q. M., 2007e. Singular mineralization processes and mineral resources quantitative prediction: New theories and methods. Earth Science Frontiers, 14 (5): 42-53 (in Chinese with English abstract).
      [11] Cheng, Q. M., 2008a. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. Mathematical Geosciences, DOI 10.1007/s11004-008-9172-6.
      [12] Cheng, Q. M., 2008b. Singularity of mineralization and multifractal distribution of mineral deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 27 (3): 298-305 (in Chinese with English abstract).
      [13] Cheng, Q. M., Agterberg, F. P., 1999. Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8 (1): 27-35. doi: 10.1023/A:1021677510649
      [14] Cheng, Q. M., Agterberg, F. P., 2008. Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Computers & Geosciences, DOI: 10.1016/j.ca-geo.2008.02.034.
      [15] Cheng, Q. M., Agterberg, F. P., Bonham-Carter, G. F., 1996. A spatial analysis method for geochemical anomaly separation. Journal of Exploration Geochemistry, 56 (3): 183-195. doi: 10.1016/S0375-6742(96)00035-0
      [16] Cheng, Q. M., Bonham-Carter, G. P., 2005. GIS and spatial analysis. Proceedings of IAMG2005. International Association for Mathematical Geology, 1345.
      [17] Cheng, Q. M., Zhao, P. D., Chen, J. G., et al., 2009. Application of singularity theoryin prediction of tin and copper mineral deposits in Gejiu district, Yunnan, China: Weak information extraction and mixing information decomposition. Earth Science—Journal of China University of Geosciences, 34 (2): 232-242 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.021
      [18] Journel, A. G., 2002. Combining knowledge from diverse sources: An alternative to traditional data independence hypotheses. Mathematical Geology, 34 (5): 573-596. doi: 10.1023/A:1016047012594
      [19] Qin, D. X., Tan, S. C., Fan, Z. G., et al., 2004. Geotectonic evolution and tin-polymetallic metallogenesis in GejiuDachang area. Acta Mineralogica Sinica, 24 (2): 118-123 (in Chinese with English abstract).
      [20] Southwestern Metallurgy Exploration Company of the Ministry of Metallurgy Industry, 1984. Geology of Gejiu mineral district. Metallurgy Industry Press, Beijing (in Chinese).
      [21] Tan, S. C., Qin, D. X., Chen, A. B., et al., 2004. Regional crust evolution and metallogenesis of Gejiu tin deposit—A discussion. Acta Mineralogica Sinica, 24 (2): 157-163 (in Chinese with English abstract).
      [22] Thiart, C., Bonham-Carter, G. F., Agterberg, F. P., et al., 2007. An application of the new Omnibus test for conditional independence in weights-of-evidence modeling. In: Harris, J., Wright, D., eds., GIS for geosciences. Geological Association of Canada, 132-142.
      [23] Xia, Q. L., Zhang, S. T., Chen, S. Y., et al., 2007. The key problems for deep mineral potential assessment in Gejiu tin deposit, Yunnan, China. Acta Mineralogica Sinica, 27 (Suppl.): 530-531 (in Chinese with English abstract).
      [24] Xu, Q. D., Xia, Q. L., Cheng, Q. M., 2009. Tectono-magmatic evolution related to metallogenic systemin Gejiu oreconcentration area, Southeast Yunnan of China. Earth Science—Journal of China University of Geosciences, 34 (2): 307-313 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.032
      [25] Yu, C. W., Tang, Y. J., Shi, P. F., et al., 1988. Dynamic system of Gejiu polymetallic mineralization processes. China University of Geosciences Press, Wuhan, 394 (in Chinese).
      [26] Zhang, S. Y., Wu, Q., Cheng, Q. M., et al., 2006. Weights of evidence method based on fuzzy training layer and its application in desertification assessment. Earth Science—Journal of China University of Geosciences, 31 (3): 389-393 (in Chinese with English abstract).
      [27] Zhang, S. T., Xia, Q. L., Zhao, P. D., et al., 2008. Diversity of mineralization and spectrum of the Gejiu superlarge tin-copper polymetallic deposit, Yunnan, China. Journal of China University of Geosciences, 19 (4): 363-370. doi: 10.1016/S1002-0705(08)60069-2
      [28] Zhao, P. D., 2002. "Three-component" quantitative resource prediction and assessment: Theory and practice of digital mineral prospecting. Earth Science—Journal of China University of Geosciences, 27 (5): 482-489 (in Chinese with English abstract).
      [29] Zhao, P. D., Cheng, Q. M., Xia, Q. L., 2008. Quantitative prediction for deep mineral exploration. Journal of China University of Geosciences, 19 (4): 309-318. doi: 10.1016/S1002-0705(08)60063-1
      [30] 成秋明, 2004. 空间模式的广义自相似性分析与矿产资源评价. 地球科学——中国地质大学学报, 29 (6): 733-744. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200406012.htm
      [31] 成秋明, 2007e. 成矿过程奇异性与矿产预测定量化的新理论与新方法. 地学前缘, 14 (5): 42-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200705006.htm
      [32] 成秋明, 2008b. 成矿过程奇异性与矿床多重分形分布. 矿物岩石地球化学通报, 27 (3): 298-305. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200803014.htm
      [33] 成秋明, 赵鹏大, 陈建国, 等, 2009. 奇异性理论在个旧锡铜矿产资源预测中的应用: 成矿弱信息提取和复合信息分解. 地球科学——中国地质大学学报, 34 (2): 232-242. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902001.htm
      [34] 秦德先, 谈树成, 范柱国, 等, 2004. 个旧-大厂地区地质构造演化及锡多金属成矿. 矿物学报, 24 (2): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200402004.htm
      [35] 谈树成, 秦德先, 陈爱兵, 等, 2004. 个旧锡矿区域地壳演化与成矿探讨. 矿物学报, 24 (2): 157-163. doi: 10.3321/j.issn:1000-4734.2004.02.011
      [36] 夏庆霖, 张寿庭, 陈守余, 等, 2007. 云南个旧锡矿深部资源潜力评价的几个关键问题. 矿物学报, 27 (增刊): 530-531.
      [37] 徐启东, 夏庆霖, 成秋明, 2009. 云南个旧矿集区区域构造-岩浆演化与锡铜多金属成矿系统. 地球科学——中国地质大学学报, 34 (2): 307-313. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902013.htm
      [38] 冶金工业部西南冶金地质勘探公司, 1984. 个旧锡矿地质. 北京: 冶金工业出版社.
      [39] 於崇文, 唐元骏, 石平方, 等, 1988. 云南个旧锡多金属成矿区内生成矿作用的动力学体系. 武汉: 中国地质大学出版社, 394. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199105013.htm
      [40] 张生元, 武强, 成秋明, 等, 2006. 基于模糊预测对象的证据权方法及其在土地沙漠化评价中的应用. 地球科学——中国地质大学学报, 31 (3): 389-393. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603016.htm
      [41] 赵鹏大, 2002. "三联式"资源定量预测与评价——数字找矿理论与实践探讨. 地球科学——中国地质大学学报, 2 (5): 482-489. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205001.htm
    • 加载中
    图(6)
    计量
    • 文章访问数:  3592
    • HTML全文浏览量:  91
    • PDF下载量:  78
    • 被引次数: 0
    出版历程
    • 收稿日期:  2008-12-16
    • 刊出日期:  2009-03-25

    目录

      /

      返回文章
      返回