• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    奇异性理论在个旧锡铜矿产资源预测中的应用: 成矿弱信息提取和复合信息分解

    成秋明 赵鹏大 陈建国 夏庆霖 陈志军 张生元 徐德义 谢淑云 王文磊

    成秋明, 赵鹏大, 陈建国, 夏庆霖, 陈志军, 张生元, 徐德义, 谢淑云, 王文磊, 2009. 奇异性理论在个旧锡铜矿产资源预测中的应用: 成矿弱信息提取和复合信息分解. 地球科学, 34(2): 232-242.
    引用本文: 成秋明, 赵鹏大, 陈建国, 夏庆霖, 陈志军, 张生元, 徐德义, 谢淑云, 王文磊, 2009. 奇异性理论在个旧锡铜矿产资源预测中的应用: 成矿弱信息提取和复合信息分解. 地球科学, 34(2): 232-242.
    CHENG Qiu-ming, ZHAO Peng-da, CHEN Jian-guo, XIA Qing-lin, CHEN Zhi-jun, ZHANG Sheng-yuan, XU De-yi, XIE Shu-yun, WANG Wen-lei, 2009. Application of Singularity Theory in Prediction of Tin and Copper Mineral Deposits in Gejiu District, Yunnan, China: Weak Information Extraction and Mixing Information Decomposition. Earth Science, 34(2): 232-242.
    Citation: CHENG Qiu-ming, ZHAO Peng-da, CHEN Jian-guo, XIA Qing-lin, CHEN Zhi-jun, ZHANG Sheng-yuan, XU De-yi, XIE Shu-yun, WANG Wen-lei, 2009. Application of Singularity Theory in Prediction of Tin and Copper Mineral Deposits in Gejiu District, Yunnan, China: Weak Information Extraction and Mixing Information Decomposition. Earth Science, 34(2): 232-242.

    奇异性理论在个旧锡铜矿产资源预测中的应用: 成矿弱信息提取和复合信息分解

    基金项目: 

    国家杰出青年科学研究基金项目 40525009

    国家自然科学基金重点项目 40638041

    国家863项目 2006AA06Z115

    教育部创新团队基金 IRT0755

    地质调查项目 121201063390110

    详细信息
      作者简介:

      成秋明(1960-), 男, 教授, 博士生导师, 教育部长江学者特聘教授, 国家杰出青年基金获得者, 国际数学地球科学协会最高奖———克伦宾奖章获得者, 主要从事矿产普查与勘探、数学地质、地理信息系统以及矿产资源评价的教学和研究.E-mail: qiuming@cug.edu.cn

    • 中图分类号: P628

    Application of Singularity Theory in Prediction of Tin and Copper Mineral Deposits in Gejiu District, Yunnan, China: Weak Information Extraction and Mixing Information Decomposition

    • 摘要:

      本研究的目的是应用非线性理论和高新信息处理技术获取矿产资源预测综合信息, 开展以有色金属和贵金属矿产资源潜力评价和预测靶区圈定, 提交个旧及周边地区矿产资源潜力分布图.围绕该研究任务, 重点开展了如何应用奇异性理论和方法, 对比个旧东西矿区的异同.由于区域构造和岩体分布等空间变化性, 导致东西区成矿背景存在较大差异, 受出露地表或近地表矿体分布和矿山开采的影响, 东西区的成矿异常强度和大小都存在较大差异, 东区总体呈高背景而西区为低背景, 因而, 对东西区的成矿信息对比研究和异常圈定相对困难.采用局部奇异性分析方法从地球化学分形密度的角度圈定了局部异常, 在东西区均较好地反映了致矿地球化学异常的分布, 同时采用广义自相似分析方法分解了综合地球化学异常和背景.结果表明, 东西区地球化学背景差异悬殊, 而局部异常具有显著的自相似性.据此在东西区同时圈定的局部异常具有内在的相似性和表现形式上的多样性, 以此为依据所圈定的靶区均具有找矿意义.

       

    • 图  1  云南个旧锡多金属矿集区简化地质图

      数据来自中国地质调查局, 三角符号表示锡矿床, 黑线条表示断层

      Fig.  1.  Simplified geology of Gejiu district

      图  2  (a) 基于窗口方法估计As局部奇异性指数分布图; (b) As地球化学原始数据图

      栅格像原空间分辨率为2 km.三角符号表示锡矿床, 黑线条表示断层

      Fig.  2.  (a) Distribution of singularity obtained for As, (b) map of raw data of As

      图  3  (a) As的奇异值(α) 与频数直方图; (b) α阈值与t值的关系

      划分不同α阈值, 应用证据权法获取t值, t值大小反映了小于α空间区域与锡矿床的空间相关性(Cheng and Agterberg, 2008)

      Fig.  3.  (a) Histogram of singularity index of As, (b) relationship between t-value and singularity index value

      图  4  (a) 采用局部奇异性方法圈定的As异常区; (b) 采用传统的统计方法圈定的异常区

      图中黄色圆点表示锡矿分布位置, 黑线条表示断层, 格子模式的多边形表示岩体, 黑色区域为确定的异常区

      Fig.  4.  (a) Anomalies delineated using singularity method, (b) anomalies delineated using traditional statistical method

      图  5  对Sn、As、Cu、Pb、Zn和Cd元素奇异值(α值) 进行主成分分析结果

      第一主成分中的得分图-组合异常分布图.圆点符号表示锡矿床, 黑线条表示断层

      Fig.  5.  Principal component analysis of singularity of Sn, As, Cu, Pb, Zn and Cd

      图  6  对元素Sn、As、Cu、Pb、Zn和Cd的对数变换值进行主成分分析

      a.特征值分布, b.第一主成分中的载荷, 即各元素对第一主成分的贡献

      Fig.  6.  Principal component analysis of log-transformed values of Sn, As, Cu, Pb, Zn and Cd

      图  7  (a) Sn、As、Cu、Pb、Zn和Cd元素对数变换后获得的第一主成分载荷图; (b) 第一主成分中载荷的S-A曲线图

      分界点对应能谱S=1 919.图b中直线表示异常呈分形分布, 右边为背景分布.分界点由计算机自动生成

      Fig.  7.  (a) Score map on the first principal component, (b) S-A plot

      图  8  (a) 分解第一主成分载荷背景场; (b) 分解第一主成分载荷异常场

      黑线表示断裂构造

      Fig.  8.  (a) Background values of scores on the first principal component, (b) anomalies of scores on the first principal component

      图  9  图 8b中异常增加常数5后求局部奇异性指数

      窗口半径为23 km; 黑线表示断裂构造

      Fig.  9.  Singularity obtained from anomalies of fig.8b plus 5

    • [1] Bonham-Carter, G. F., 1994. Geographic information systems for geoscientists: Modelling with GIS. Pergamon, Oxford, 398.
      [2] Cheng, Q. M., 1999. Multifractality and spatial statistics. Computer & Geosciences, 25 (9): 949-961.
      [3] Cheng, Q. M., 2000. GeoData analysis system (GeoDAS) for mineral exploration: User's guide and exercise manual. Material for the training workshop on GeoDAS held at York University, Nov. 1to3, 2000.204. www.gis-world.org/geodat.
      [4] Cheng, Q. M., 2001. Multifractal and geostatistic metho dsfor characterizinglocal structure and singularity properties of exploration geochemical anomalies. Earth Science—Journal of China University of Geosciences, 26 (2): 161-166 (in Chinese with English abstract).
      [5] Cheng, Q. M., 2004a. Quantifying the generalized self-similarity of spatial patterns for mineral resources assessment. Earth Science—Journal of China University of Geosciences, 29 (6): 733-744 (in Chinese with English abstract).
      [6] Cheng, Q. M., 2004b. A new model for quantifying anisotropic scale invariance and for decomposition of mixing patterns. Mathematical Geology, 36 (3): 345-360. doi: 10.1023/B:MATG.0000028441.62108.8a
      [7] Cheng, Q. M., 2007a. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32 (1-2): 314-324. doi: 10.1016/j.oregeorev.2006.10.002
      [8] Cheng, Q. M., 2007b. Multifractal imaging filtering and decomposition methods in space, Fourier frequency and Eigen domains. Nonlin. Processes Geophys., 14: 293-303. doi: 10.5194/npg-14-293-2007
      [9] Cheng, Q. M., 2007c. Singular mineralization processes and mineral resources quantitative prediction: New theories and methods. Earth Science Frontiers, 14 (5): 42-53 (in Chinese with English abstract).
      [10] Cheng, Q. M., 2008. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. Mathematical Geosciences, DOI 10.1007/s11004-008-9172-6.
      [11] Cheng, Q. M., Agterberg, F. P., 2008. Singularity analysis of ore-mineral and toxic trace elements in stream sediments, Computers & Geosciences, DOI: 10.1016/j.ca-geo.2008.02.034.
      [12] Cheng, Q. M., Agterberg, F. P., Ballantyne, S. B., 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51 (2): 109-130. doi: 10.1016/0375-6742(94)90013-2
      [13] Cheng, Q. M., Xu, Y. G., Grunsky, E., 2000. Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research, 9 (1): 43-51. doi: 10.1023/A:1010109829861
      [14] Cheng, Q. M., Zhao, P. D., Zhang, S. Y., et al., 2009. Application of singularity theory in prediction of tin and copper mineral deposits in Gejiu district, Yunnan, China: Information integration and delineation of mineral exploration targets. Earth Science—Journal of China University of Geosciences, 34 (2): 243-252 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.022
      [15] Lu, Y., 2004. Study on the metallogenic conditions and the ore-hunting prospect for the western district of Gejiu tin mine, Yunnan Province. Bulletin of Mineralogy, Petrology and Geochemistry, 23 (1): 57-61 (in Chinese with English abstract).
      [16] Qin, D. X., Tan, S. C., Fan, Z. G., et al., 2004. Geotectonic evolution and tin-polymetallic metallogenesis in Gejiu-Dachang area. Acta Mineralogica Sinica, 24 (2): 117-123 (in Chinese with English abstract).
      [17] Southwestern Metallurgy Exploration Company of the Ministry of Metallurgy Industry, 1984. Geology of Gejiu mineral district. Metallurgy Industry Press, Beijing (in Chinese).
      [18] Tan, S. C., Qin, D. X., Chen, A. B., et al., 2004. Regional crust evolution and metallogenesis of Gejiu tin deposit—A discussion. Acta Mineralogica Sinica, 24 (2): 157-163 (in Chinese with English abstract).
      [19] Wan, T. F., 2004. Essentials of tectonics in China. Geological Publishing House, Beijing, 75-271 (in Chinese).
      [20] Xia, Q. L., Zhang, S. T., Chen, S. Y., et al., 2007. The key problems for deep mineral potential assessment in Gejiu tin deposit, Yunnan, China. Acta Mineralogica Sinica, 27 (Suppl.): 530-531 (in Chinese with English abstract).
      [21] Xu, Q. D., Xia, Q. L., Cheng, Q. M., 2009. Tectono-magmatic evolution related to metallogenic system in Gejiu ore-concentration area, Southeast Yunnan of China. Earth Science—Journal of China University of Geosciences, 34 (2): 307-313 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.032
      [22] Yu, C. W., Tang, Y. J., Shi, P. F., et al., 1988. Dynamic system of Gejiu polymetallic mineralization processes. China University of Geosciences Press, Wuhan, 394 (in Chinese).
      [23] Zeng, Y. F., Liu, W. J., Chen, H. D., et al., 1995. Evolution of sedi mentation and tectonics of the Youjiang composite basin, South China. Acta Geologica Sinica, 69 (2): 113-124 (in Chinese with English abstract).
      [24] Zhang, S. T., Xia, Q. L., Zhao, P. D., et al., 2008. Diversity of mineralization and spectrum of the Gejiu superlarge tin-copper polymetallic deposit, Yunnan, China. Journal of China University of Geosciences, 19 (4): 363-370. doi: 10.1016/S1002-0705(08)60069-2
      [25] Zhao, P. D., 2002. "Three-component" quantitative resource prediction and assessment: Theory and practice of digital mineral prospecting. Earth Science—Journal of China University of Geosciences, 27 (5): 482-486 (in Chinese with English abstract).
      [26] Zhao, P. D., Cheng, Q. M., Xia, Q. L., 2008. Quantitative prediction for deep mineral exploration. Journal of China University of Geosciences, 19 (4): 309-318. doi: 10.1016/S1002-0705(08)60063-1
      [27] Zhuang, Y. Q., Wang, R. Z., Yang, S. P., et al., 1996. Snand Cu polymetallic mineral deposits in Gejiu. Seismic Pubishing House, Beijing, 124.
      [28] 成秋明, 2001. 多重分形与地质统计学方法用于勘查地球化学异常空间结构和奇异性分析. 地球科学——中国地质大学学报, 26 (2): 161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200102012.htm
      [29] 成秋明, 2004a. 空间模式的广义自相似性分析与矿产资源评价. 地球科学——中国地质大学学报, 29 (6): 733-744. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200406012.htm
      [30] 成秋明, 2007c. 成矿过程奇异性与矿产预测定量化的新理论与新方法. 地学前缘, 14 (5): 42-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200705006.htm
      [31] 成秋明, 赵鹏大, 张生元, 等, 2009. 奇异性理论在个旧锡铜矿产资源预测中的应用: 综合信息集成与靶区圈定. 地球科学——中国地质大学学报, 34 (2): 243-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902002.htm
      [32] 卢耀, 2004. 云南个旧矿区西区成矿条件及找矿远景探讨. 矿物岩石地球化学通报, 23 (1): 57-61. doi: 10.3969/j.issn.1007-2802.2004.01.012
      [33] 秦德先, 谈树成, 范柱国, 等, 2004. 个旧-大厂地区地质构造演化及锡多金属成矿. 矿物学报, 24 (2): 117-123. doi: 10.3321/j.issn:1000-4734.2004.02.004
      [34] 谈树成, 秦德先, 陈爱兵, 等, 2004. 个旧锡矿区域地壳演化与成矿探讨. 矿物学报, 24 (2): 157-163. doi: 10.3321/j.issn:1000-4734.2004.02.011
      [35] 万天丰, 2004. 中国大地构造学纲要. 北京: 地质出版社, 75-271. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z2020.htm
      [36] 夏庆霖, 张寿庭, 陈守余, 等, 2007. 云南个旧锡矿深部资源潜力评价的几个关键问题. 矿物学报, 27 (增刊): 530-531.
      [37] 徐启东, 夏庆霖, 成秋明, 2009. 云南个旧矿集区区域构造-岩浆演化与锡铜多金属成矿系统. 地球科学——中国地质大学学报, 34 (2): 307-313. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902013.htm
      [38] 冶金工业部西南冶金地质勘探公司. 个旧锡矿地质. 北京: 冶金工业出版社, 1984.
      [39] 於崇文, 唐元骏, 石平方, 等, 1988. 云南个旧锡多金属成矿区内生成矿作用的动力学体系. 武汉: 中国地质大学出版社, 394.
      [40] 曾允孚, 刘文均, 陈洪德, 等, 1995. 华南右江复合盆地的沉积构造演化. 地质学报, 69 (2): 113-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199502001.htm
      [41] 赵鹏大, 2002. "三联式"资源定量预测与评价——数字找矿理论与实践探讨. 地球科学——中国地质大学学报, 27 (5): 482-489. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205001.htm
      [42] 庄永秋, 王任重, 杨树培, 等, 1996. 云南个旧锡铜多金属矿床. 北京: 地震出版社, 124.
    • 加载中
    图(9)
    计量
    • 文章访问数:  3584
    • HTML全文浏览量:  61
    • PDF下载量:  78
    • 被引次数: 0
    出版历程
    • 收稿日期:  2008-12-16
    • 刊出日期:  2009-03-25

    目录

      /

      返回文章
      返回