On the Lithosphere of Indo-Asia Collision Zone in Southern Tibet: Petrological and Geochemical Constraints
-
摘要: 拟以岩石学和地球化学的研究为基础, 结合地球物理与构造地质学的研究成果, 从一个侧面探讨青藏高原岩石圈、特别是印度-亚洲主碰撞带岩石圈结构、组成及今后进一步的研究方向.印度-亚洲主碰撞带具有青藏高原最厚的地壳, 由初生地壳及再循环地壳两类不同性质的地壳构成; 青藏巨厚地壳是由于构造增厚及地幔物质注入(通过岩浆作用) 增厚两种机制形成的.碰撞以来藏南地壳加厚主要发生在约50~25Ma期间.青藏岩石圈地幔在地球化学和岩石学上是不均一的, 至少存在3种地球化学端元: (1) 新特提斯大洋岩石圈端元; (2) 印度陆下岩石圈端元; (3) 新特提斯闭合前青藏原有的岩石圈端元.在青藏高原还发现了一批壳幔深源岩石包体及高压-超高压矿物, 对于认识青藏深部有重要的意义.可以识别出青藏高原现今存在3种岩石圈结构类型: 第1种, 增厚的岩石圈(帕米尔型); 第2种, 减薄的岩石圈(冈底斯型); 第3种, 加厚-减薄-再加厚的岩石圈(羌塘型).这3类岩石圈是否在时间上具有先后顺序, 尚无明确的证据, 需要在今后加以注意.研究表明, 沿冈底斯带后碰撞钾质-超钾质火山活动, 可能与新特提斯洋俯冲板片在后碰撞阶段的断离及印度大陆岩石圈向青藏的持续俯冲作用有关, 但西段、中段与东段的动力学机制不相同.在青藏高原北部地区(羌塘、可可西里等地区), 后碰撞钾质-超钾质火山活动, 可能与波状外向扩展式的软流圈上隆引起的减压熔融有关.在高原北缘西昆仑、玉门等地区, 其形成机制可能为大规模走滑断层引起的减压熔融.青藏高原后碰撞火成活动具有明显而有规律的时空迁移.同碰撞的林子宗火山活动在65Ma左右始于冈底斯南部, 标志印度-亚洲大陆碰撞的开始.于45Ma左右火山活动向北迁移到羌塘-“三江”北段, 开始了后碰撞火山活动; 然后自内向外迁移, 即北向可可西里、南向冈底斯(在冈底斯内部又自西向东)、东向西秦岭迁移; 最后(6Ma以来), 再分别向高原的西北、东北、东南三隅迁移.结合已有地球物理资料, 一种可能的解释是它可能暗示由印度和亚洲大陆板块碰撞所诱发的深部物质(如中-下地壳、软流圈地幔物质) 流动.Abstract: This paper discusses the composition and structure of the lithosphere of the Tibetan Plateau, especially of the main collision zone in southern Tibet upon the basis of petrological and geochemical studies, combining with geological and geophysical researches.The Indo-Asia main collision zone possess the thickest crust of the Tibetan Plateau, which consists of two different types of the crust, juvenile crust and recycled crust.The thicken crust formed by two mechanism, both structural thickening and the inputs of the mantle materials into the crust via magmatism.The lithospheric mantle underneath the Tibetan Plateau is inhomogeneous in petrology and geochemistry.At least three mantle isotopic reservoirs may be distinguished from the heterogeneity of Tibetan magmatic sources: (1) a Neo-Tethyan, Indian Ocean (DUPAL-like) component, (2) an EM2-rich Indian subcontinental lithospheric mantle component, and (3) a primordial Tibetan lithospheric mantle component generated prior to the India-Asia collision, which can also be considered the pre- (India-Asia) collisional Asian lithospheric mantle component.Also, some mantle-and lower crust-derived xenoliths carried by volcanics, and the outcrops of high pressure-ultrahigh pressure mineral assemblages have been found on the Tibetan Plateau.Three structural types of the lithosphere of the Tibetan Plateau can be distinguished, i.e., thickened lithosphere (Pamirs-type), thinned lithosphere (Gangdese-type) and thickened-thinned-rethickened lithosphere (Qiangtang-type).The temporal relations among these three structural types of the lithosphere, however, is unclear so far.The post-collisional potassic-ultrapotassic volcanism along the Gangdese was presumably related to slab break-off of the subducting Neo-Tethyan plate and the subduction of Indian continental lithosphere beneath the Lhasa Block, with different mechanism in western, middle and eastern segments, respectively.In the northern part of the plateau (the Qiangtang, the Hoh Xil, etc.), however, volcanism could be related to a wavelike outward propagation of upwelling asthenosphere.In the northern margin of the plateau (western Kunlun, Yumen, etc.), volcanism might be as a result of decompressive melting induced by large-scale strike-slip faulting.Migration of collisional and postcollisional volcanism with time shows a highly distinctive pattern.Initially, as an initial response to the India-Asia collision, igneous activity migrated northward between ca.65 and 45Ma, away from the Tsangpo collision suture.Between ca.45 and 6Ma, volcanic activity migrated outward from the plateau interior, implying wavelike outward propagation of upwelling asthenosphere.A third stage, still in progress, is marked by the migration of activity to northwestern, northeast-eastern, and southeastern peripheral regions of the plateau between 6Ma and the present.Overall, such a highly distinctive pattern of activity can be interpreted to reflect lateral asthenospheric mantle flow or lower crust flow induced by the approach, and ensuing collision, of relatively thick (India and Eurasia) continental plates.
-
Key words:
- petrology /
- geochemistry /
- Indo-Asia collision zone /
- southern Tibet
-
图 2 西藏冈底斯带花岗岩类岩石的εNd (t) - (87Sr/86Sr) i关系(引自莫宣学等, 2005,图例见原图中的说明)
图中实线代表不同地段花岗岩类岩石的同位素成分范围, 不同颜色的虚线代表不同火山岩的同位素成分范围
Fig. 2. Plots of εNd (t) versus (87Sr/86Sr) i from granitoids in the Gangdese, Tibet
图 3 青藏高原新生代火山岩的时空迁移(引自Mo et al., 2006,图例见原图中的说明, 图中的英文地名已译成中文)
图中灰色箭头表示第二阶段(25~6 Ma) 后碰撞火山活动随时间的迁移趋势; 橙色箭头表示第三阶段(6 Ma-近代) 后碰撞火山活动的迁移趋势
Fig. 3. Sketch map showing migration paths of the Cenozoic volcanism with time in the Tibetan Plateau (after Mo et al., 2006)
-
[1] Argand, E., 1924. La tectonique del'asie. 13th International Geology Congress, 7: 171. [2] Chu, M. F., Chung, S. L., Song, B., et al., 2006. Zircon U-Pband Hf isotope constraints on the Mesozoic tectonicsand crustal evolution of southern Tibet. Geology, 34 (9): 745-748. doi: 10.1130/G22725.1 [3] Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetantectonic evolution inferred from spatial and temporalvariations in post-collisional magmatism. Earth-ScienceReviews, 68 (3-4): 173-196. [4] Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites fromcontinental collision zone: Melting of thicken lower-crustbeneath southern Tibet. Geology, 31 (11): 1021-1024. doi: 10.1130/G19796.1 [5] Chung, S. L., Lo, C. H., Lee, T. Y., et al., 1998. Dischro-nous uplift of the Tibetan Plateau starting from40Maago. Nature, 349: 769-773. [6] Condie, K. C., 1982. Plate tectonics and crustal evolution. Pergamon, New York, 1-310. [7] Deng, J. F., Mo, X. X., Luo, Z. H., et al., 2001. Inhomogeneityof the lithosphere of Tibetan Plateau and implications forgeodynamics. Sciencein China (Series D), 44: 56-63. doi: 10.1007/BF02911971 [8] Deng, J. F., Mo, X. X., Zhao, H. L., et al., 2004. A newmodel for the dynamic evolution of Chinese lithosphere: 'Continental roots-plume tectonics'. Earth Science Re-views, 65 (3-4): 223-275. doi: 10.1016/j.earscirev.2003.08.001 [9] Deng, J. F., Zhao, H. L., Mo, X. X., et al., 1996. Continentalroots-plume tectonics: Akeyto continental dynamics. Geo-logical Publishing House, Beijing, 1-110 (in Chinese). [10] Depaolo, D. J., 1985. Isotope studies of processes in maficmagma chambers: I. Kiglapait intrusion, Labrador. Journal of Petrology, 26 (4): 925-951. doi: 10.1093/petrology/26.4.925 [11] Depaolo, D. J., Perry, F. V., Baldridge, W. S., 1992. Crustalversus mantle sources of granitic magmas: A two-pa-rameter model based on Nd isotopic studies. Earth Sci-ences, 83: 439-446. [12] Dewey, J. F., Bird, J. M., 1970. Mountain belts and newglobal tectonics. Journal of Geophyscial Research, 74 (14): 2625-2467. [13] Dickinson, W. R., 1971. Plate tectonics in geologic history. Science, 174: 107-113. doi: 10.1126/science.174.4005.107 [14] Ding, L., Kapp, P., Wan, X., 2005. Paleocene-Eocene recordof ophiolite obduction and initial India-Asia collision, South-Central Tibet. Tectonics, 24 (3): 1-18. [15] Ding, L., Kapp, P., Yue, Y., et al., 2007. Postcollisionalcalc-alkaline lavas and xenoliths from the southernQiangtang Terrane, Central Tibet. Earthand PlanetaryScience Letters, 254: 28-38. doi: 10.1016/j.epsl.2006.11.019 [16] England, P. C., Houseman, G. A., 1989. Extension duringcontinental convergence with application to the TibetanPlateau. Journal of Geophyscial Research, 94 (B12): 17561-17579. doi: 10.1029/JB094iB12p17561 [17] Flower, M. F. J., Tamaki, K., Hoang, N., 1998. Mantle ex-trusion: A model for dispersed volcanism and DUPAL-like asthenosphere in east Asia and the western Pacific. In: Flower, M. F. J., et al., eds., Mantle plume andplate interactions in East Asia. Geodyn. Series27. AGU. Washington, 67-88. [18] Hacker, B. R., Gnos, E., Ratschbacher, L., et al., 2000. Hotand dry deep crustal xenoliths from Tibet. Science, 287 (5462): 2463-2466. doi: 10.1126/science.287.5462.2463 [19] Hirn, A., Jiang, M., Sapin, M., et al., 1995. Seismic anisot-ropy as anindicator of mantle flowbeneath the Himala-yas and Tibet. Nature, 375: 571-574. doi: 10.1038/375571a0 [20] Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin ofadakitic intrusives generated during Mid-Miocene east-west extension in South Tibet. Earth Planet. Sci. Lett., 220 (1-2): 139-155. doi: 10.1016/S0012-821X(04)00007-X [21] Hou, Z. Q., Zhao, Z. D., Gao, Y. F., et al., 2006. Tearingand dischronal subduction of the Indian continentalslab: Evidence from Cenozoic Gangdese volcano-mag-matic rocks in South Tibet. Acta Petrologica Sinica, 22 (4): 761-774 (in Chinese with English abstract). [22] Jiang, W., Mo, X., Zhao, C. et al., 1999. Geochemical character-istics of granites and their micromafic enclaves in centralGangdese in Qinghai-Xizang (Tibet) plateau. Acta Petro-logica, 15 (1): 89-97 (in Chinese with English abstract). [23] Kind, R., Ni, J., Zhao, W., et al., 1996. Evidence fromearth-quake data for partially molten crustal layer in southernTibet. Science, 274: 1692-1694. doi: 10.1126/science.274.5293.1692 [24] Li, G. B., 2004. The Paleogene Microfossils and the evolutionof basins in southern Tibet: [Dissertaticen]. China University of Geosciences, Beijing, 1-171 (in Chinese withEnglish abstract). [25] Liu, G. D., 2005. An introduction to geophysics. Shanghai Pressof Science and Technology, Shanghai, 1-154 (in Chinese). [26] Liu, M., Cui, X. J., Li, F. T., 2004. Cenozoic rifting and volcan-ismin eastern China: A mantle dynamic linktothe Indo-A-sia collision?Tectonophysics, 393 (1-4): 29-42. doi: 10.1016/j.tecto.2004.07.029 [27] Luo, Z. H., Bai, Z. D., Zhao, Z. D., et al., 2003. The originand geological significance of the Cenozoic volcanicrocks on both southern and northern margins of the Ta-rimbasin. Earth Science Frontiers, 10 (3): 179-189 (inChinese with English abstract). [28] Luo, Z. H., Xiao, X. C., Cao, Y. Q., et al., 2001. The Ceno-zoic mantle magmatismand motion of lithosphere onthenorth margin of the Tibetan Plateau. Science in China (Series D), 44: 10-17. [29] Mo, X. X., Deng, J. F., 1999. Three types of lithospheric struc-ture in the Tibetan Plateau. Terra Nostra, 2: 99-100. [30] Mo, X. X., Dong, G. C., Zhao, Z. D., et al., 2005. Spatial andtemporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and e-volution. Geological Journal of China Universities, 11 (3): 281-290 (in Chinese with English abstract). [31] Mo, X. X., Hou, Z. Q., Niu, Y. L., et al., 2007a. Mantle con-tributions to crustal thickening during continental colli-sion: Evidence from Cenozoic igneous rocks in southernTibet. Lithos, 96 (1-2): 225-242. doi: 10.1016/j.lithos.2006.10.005 [32] Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2007b. Migrationof the Tibetan Cenozoic potassic volcanismandits tran-sition to eastern basaltic province: Implications for crus-tal and mantle flow. Geoscience, 21 (2): 255-264 (inChinese with English abstract). [33] Mo, X. X., Zhao, Z. D., Zhou, S., et al., 2007c. Onthe timingof India-Asian continental collision. Geological Bulletinof China, 26 (10): 1240-1245 (in Chinese with Englishabstract). [34] Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribu-tion of syncollisional felsic magmatism to continentalcrust growth: A case study of the Paleogene Linzizongvolcanic succession in southern Tibet. Chemical Geolo-gy, 250 (1-4): 49-67. doi: 10.1016/j.chemgeo.2008.02.003 [35] Mo, X. X., Pan, G. T., 2006. Fromthe Tethys to the forma-tion of the Tibetan Plateau: Constrained by tectono-magmatic events. Earth Science Frontiers, 13 (6): 43-51 (in Chinese with English abstract). [36] Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2003. Response ofvolcanismto the India-Asia collision. Earth Science Fron-tiers, 10 (3): 135-148 (in Chinese with English abstract). [37] Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2006. Petrology andgeochemistry of postcollisional volcanic rocks fromthe Ti-betan Plateau: Implications for lithosphere heterogeneityand collision-induced asthenospheric mantle flow. In: Dilek, Y., Pavlides, S., eds. Postcollisional tectonics and mag-matismin the Mediterranean region and Asia. GeologicalSociety of America Special Paper, 409: 507-530. [38] Mo, X. X., Zhao, Z. D., Zhou, S., et al., 2002. Evidence fortiming of theinitiation of India-Asia collisionfromigne-ous rocks in Tibet. Eos Trans. AGU, 83 (47), F1003. [39] Molnar, P., Houseman, G., Clinton, C., 1998. Rayleigh-Tay-lor instability and convective thinning of mechanically thickened lithosphere: Effects of non-linear viscosity de-creasing exponentially with depth and of horizontal shortening of the layer. Geophysical Journal Interna-tional, 133 (3): 568-584. doi: 10.1046/j.1365-246X.1998.00510.x [40] Nelson, K. D., Zhao, W. J., Brown, L. D., et al., 1996. Partiallymolten middle crust beneath southern Tibet: Synthesis ofproject INDEPTHresults. Science, 274: 1684-1688. doi: 10.1126/science.274.5293.1684 [41] Owens, T. J., Zandt, G., 1997. Implications of crustal prop-erty variations for models of Tibetan Plateau evolution. Nature, 387: 37-43. doi: 10.1038/387037a0 [42] Powell, C. M., 1986. Continental underplating model for therise of the Tibetan Plateau. Earth Planetary Science Letter, 81 (1): 79-94. doi: 10.1016/0012-821X(86)90102-0 [43] Qiu, R. Z., 2002. Igneous rocks in the western Tibetan plat-eau and Tectonic evolution of the Neo-Tethys[Disser-tation]. China University of Geosciences, Beijing, 1-99 (in Chinese). [44] Rapp, P. R., Shimizu, N., Norman, M. D., et al., 1999. Reac-tion between slab-derived melts and peridotite in themantle wedge: Experimental constraints at3.8Gpa. Chemical Geology, 160 (4): 335-356. doi: 10.1016/S0009-2541(99)00106-0 [45] Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface deformation and lower crustal flow in easternTibet. Science, 276: 788-790. doi: 10.1126/science.276.5313.788 [46] Searle, M. P., 2006. Crustal flowin Tibet: Geophysical evi-dence for the physical state of Tibetan lithosphere, andinferred patterns of active flow. In: Law, R. D., Searle, M. P., Godin, L., eds., Channel flow, ductile extrusionand exhumation in continental collision zones. Geolog-ical Society of London Spec. Publ., London, 39-70. [47] Song, Z. H., Chen, G. Y., An, C. Q., et al., 1993. Three dimen-sional velosity structure of the crust and upper mantle ofChinese continent and adjacent submarine areas. Science inChina (Series B), 23 (2): 180-188 (in Chinese). [48] Teng, J. W., Sun, K. Z., Wei, S. Y., et al., 1984. Chracteris-tics of earthquake activities in the Tibetan Plateau andperipheral regions. Himalayan GeologyⅡ, 311-329 (in Chinese with English abstract). [49] Unsworth, M. J., Jones, A. G., Wei, W., et al., 2005. Crustalrheology of the Himalaya and southern Tibet inferredfrom magnetotelluric data. Nature, 438: 78-81. doi: 10.1038/nature04154 [50] Wan, X. Q., Jansa, L. F., Sarti, M., 2002. Cretaceous and Paleo-gene boundary stratainsouthern Tibet and their implication for India-Asia collision. Lethaia, 35 (2): 131-146. doi: 10.1080/002411602320183999 [51] Wang, J. H., Yin, A., Harrison, T. M., et al., 2001. A tec-tonic model for Cenozoic igneous activities inthe easternIndo-Asian collision zone. Earth and Planetary ScienceLetters, 188 (1-2): 123-133. doi: 10.1016/S0012-821X(01)00315-6 [52] Wei, W. B., Unsworth, M., Jones, A., et al., 2001. Detectionof widespreadfluids inthe Tibetan crust by magnetotel-luric studies. Science, 292: 716-718. doi: 10.1126/science.1010580 [53] Wu, G. J., Gao, R., Yu, Q. F., et al., 1991. Integrated inves-tigations of the Qinghai-Tibet Plateau along the Yard-ong-Gol mud geotransect. Acta Geophysica Sinica, 34: 555-562 (in Chinese with English abstract). [54] Wyllie, P. J., 1977. Crustal anatexis: An experimental re-view. Tectonophysics, 43 (1-2): 41-71. doi: 10.1016/0040-1951(77)90005-1 [55] Xiao, X. C., Li, T. D., 2000. Mechanismof tectonic evolution anduplift of the Tibetan Plateau. Guangdong Science and Tech-nology Press, Guangzhou, 1-313 (in Chinese). [56] Xiao, X. C., Li, T. D., Li, G. C., et al., 1988. Tectonic evolu-tion of the Himalayan lithosphere general review. Geo-logical Publishing House, Beijing, 1-194 (in Chinese). [57] Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2007. An orogenicplateau: Mechanismfor collage of terranes, collisional o-rogeny and uplift of the Tibetan Plateau. Geological Publishing House, Beijing, 1-458 (in Chinese). [58] Yang, J. S., Bai, W. J., Fang, Q. S., et al., 2008. Ultrahigh-pres-sure minerals and new minerals fromthe Luobusa ophiolitic chromitites in Tibet: Areview. Acta Geoscientia Sinica, 29 (3): 263-274 (in Chinese with English abstract). [59] Yang, J. S., Xu, Z. Q., Geng, Q. R., et al., 2006. A possiblenew HP-UHP metamerphic belt in China: A discoveryof eclogite in Lhasa terrane of the Tibetan Plateau. Acta Geologica Sinica, 80 (12): 3-12 (in Chinese with Eng-lish abstract). [60] Yang, J. S., Xu, Z. Q., Li, T. F., et al., 2007. Oceanic-plate-subduction-type of eclogites in Lhasa terrane of the Ti-betan Plateau: The remains of Paleo-Tethyan oceanicbasin?Geological Bulletin of China, 26 (10): 1277-1287 (in Chinese with English abstract). [61] Yin, A., Harrison, T. M., 2000. Geologic evolution of theHimalayan-Tibet. Orogen Annu. Rev. Earth Planet Sci, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211 [62] Yu, X., Mo, X., Liao, Z., et al., 2001. The temperature andpressure condition of garnet-lherzolite and garnet-web-sterite from west Qinling, China. Science in China (Ser. D), 44 (Suppl. ): 155-161. [63] Yu, X. H., Zhao, Z. D., Mo, X. X., et al., 2004. Trace ele-ments, REEand Sr, Nd, Pbisotopic geochemistry of Ce-nozoic kamafugite and carbonatite from West Qinling, Gansu Province: Implication of plume-lithosphere inter-action. Acta Petrologica Sinica, 20 (3): 483-494 (inChinese with English abstract). [64] Zhang, S., Mahoney, J. J., Mo, X. X., et al., 2005. Evidence for a widespread Tethyan upper mantle with Indian-O-cean-type isotopic characteristics. Journal of Petrolo-gy, 46 (4): 829-858. doi: 10.1093/petrology/egi002 [65] Zhao, W. L., Morgen, W., 1987. Injection of Indian crust intoTibetan lower crust: A two-dimensional finite elementmodel study. Tectonics, 6 (4): 489-504. doi: 10.1029/TC006i004p00489 [66] Zhao, W. J., Nelson, K. D., Meissner, R., 1997. Advances ofINDEPTH-Adeep profiling study in Tibet and the Hi-malayas. Episodes20 (4): 266-272. [67] Zhao, Z. D., Mo, X. X., Dilek, Y., et al., Geochemical andSr-Nd-Pb-Oisotopic compositions of the postcollisional ultra-potassic magmatism in SW Tibet: Petrogenesisand implications for India intra-continental subduction underneath southern Tibet. Lithos (in press). [68] Zhao, Z. D., Mo, X. X., Sun, C. G., et al., 2008. Mantle xen-oliths in southern Tibet: Geochemistry and constraintsfor the nature of the mantle. Acta Petrologica Sinica, 24 (2): 193-202 (in Chinese with English abstract). [69] Zhou, H. W., Murphy, M. A., 2005. Tomographic evidence forwhole scale underthrusting of India beneath the entire Ti-betan Plateau. J. Asian Earth Sci., 25 (3): 445-457. doi: 10.1016/j.jseaes.2004.04.007 [70] Zhou, S., Mo, X. X., Dong, G. C., et al., 2004.40Ar-39Ar ge-ochronology of Cenozoic Linzizong volcanic rocks fromLinzhou basin, Tibet, China, and their geological impli-cations. Chinese Science Bulletin, 49 (18): 1970-1979. doi: 10.1007/BF03184291 [71] Zhu, D. C., Mo, X. X., Niu, Y. L., Zhao, Z. D. et al., ZirconU-Pb dating and Hf isotopic investigation on the EarlyCretaceous igneous rocks along a west-east traverseacross the central Lhasa Terrane, Tibet (submitted toChemical Geology). [72] Zhu, D. C., Mo, X. X., Niu, Y. L., Zhao, Z. D. et al., The lithos-pheric architecture of the Lhasa Terrane: Revelation andgeodynamic significance (submitted to Nature). [73] 邓晋福, 赵海玲, 莫宣学, 等, 1996. 大陆根-柱构造——大陆动力学的钥匙. 北京: 地质出版社, 1-110. [74] 侯增谦, 赵志丹, 高永丰, 等, 2006. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山-岩浆作用证据. 岩石学报, 22 (4): 761-774. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604001.htm [75] 江万, 莫宣学, 赵崇贺, 等, 1999. 青藏高原冈底斯带中段花岗岩及其中铁镁质微粒包体地球化学特征. 岩石学报, 15 (1): 89-97. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB901.009.htm [76] 李国彪, 2004. 西藏南部古近纪微体古生物及盆地演化特征[博士学位论文]. 北京: 中国地质大学, 1-171. [77] 刘光鼎, 2005. 地球物理引论. 上海: 上海科学技术出版社, 1-154. [78] 罗照华, 白志达, 赵志丹, 等, 2003. 塔里木盆地南北缘新生代火山岩成因及其地质意义. 地学前缘, 10 (3): 179-189. doi: 10.3321/j.issn:1005-2321.2003.03.017 [79] 莫宣学, 赵志丹, 邓晋福, 等, 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10 (3): 135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013 [80] 莫宣学, 董国臣, 赵志丹, 等, 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11 (3): 281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001 [81] 莫宣学, 潘桂棠, 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束. 地学前缘, 13 (6): 43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007 [82] 莫宣学, 赵志丹, 周肃, 等, 2007c. 印度-亚洲大陆碰撞的时限. 地质通报, 26 (10): 1240-1245. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200710004.htm [83] 莫宣学, 赵志丹, 邓晋福, 等, 2007b. 青藏新生代钾质火山活动的时空迁移及向东部玄武岩省的过渡: 壳幔深部物质流的暗示. 现代地质, 21 (2): 255-264. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702011.htm [84] 邱瑞照, 2002. 青藏高原西部火成岩与新特提斯构造演化[博士学位论文]. 中国地质大学(北京), 1-99. [85] 宋仲和, 陈国英, 安昌强, 等, 1993. 中国大陆及其海域地壳-上地幔三维速度结构. 中国科学(B辑), 3 (2): 180-188. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199302010.htm [86] 滕吉文, 孙克忠, 魏斯禹, 等, 1984. 中国青藏高原及其边缘地带的地震活动特征. 喜马拉雅地质Ⅱ, 311-329. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYJ198912004023.htm [87] 吴功建, 高锐, 余钦范, 等, 1991. 青藏高原亚东-格尔木断面综合地球物理调查研究. 地球物理学报, 34 (5): 552-562. doi: 10.3321/j.issn:0001-5733.1991.05.003 [88] 肖序常, 李廷栋, 2000. 青藏高原的构造演化与隆升机制总论. 广州: 广东科学技术出版社, 1-313. [89] 肖序常, 李廷栋, 李光岑, 等, 1988. 喜马拉雅岩石圈构造演化. 北京: 地质出版社, 1-194. [90] 许志琴, 杨经绥, 李海兵, 等, 2007. 造山的高原——青藏高原的地体拼合、碰撞造山及隆升机制. 北京: 地质出版社, 1-458. [91] 杨经绥, 许志琴, 耿全如, 等, 2006. 中国境内可能存在一条新的高压/超高压变质带——青藏高原拉萨地体中发现榴辉岩带. 地质学报, 80 (12): 3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200612000.htm [92] 杨经绥, 许志琴, 李天福, 等, 2007. 青藏高原拉萨地块中的大洋俯冲型榴辉岩: 古特提斯洋盆的残留?地质通报, 26 (10): 1277-1287. doi: 10.3969/j.issn.1671-2552.2007.10.006 [93] 杨经绥, 白文吉, 方青松, 等, 2008. 西藏罗布莎蛇绿岩铬铁矿中的超高压矿物和新矿物(综述). 地球学报, 29 (3): 263-274. doi: 10.3321/j.issn:1006-3021.2008.03.002 [94] 喻学惠, 赵志丹, 莫宣学, 等, 2004. 甘肃西秦岭新生代钾霞橄黄长岩和碳酸岩的微量、稀土和Sr, Nd, Pb同位素地球化学: 地幔柱-岩石圈交换的证据. 岩石学报, 20 (3): 483-494. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501007.htm [95] 赵志丹, 莫宣学, 孙晨光, 等, 2008. 青藏高原南部地幔包体的发现及其意义. 岩石学报, 24 (2): 193-202. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802003.htm