Sequence Stratigraphy Characteristics and Sedimentary Elements in Deepwater
-
摘要: 本文在回顾当前国际上深水沉积研究热点的基础上,结合在墨西哥湾深水研究的成果系统描述了深水沉积的定义、形成机理、深水沉积层序及深水沉积构成要素的特点.深水沉积主要是在重力流作用下深水环境的沉积,主要形成于相对水平面下降和早期上升的时期,主要分布在低位体系域中.深水层序以凝缩段为边界,块状搬运沉积最早形成并直接位于层序界面上,其上被河道-天然堤沉积所覆盖.典型深水沉积的要素主要由河道、天然堤及越岸沉积、板状砂、块状搬运沉积等构成,这些沉积要素时空上有序地分布.深水河道是物源的主要通道和沉积的重要场所,从上游至下游河道弯曲度增加,能量逐渐减弱.侧向迁移明显,垂向上由富砂的顺直河道演化为相对富泥的弯曲河道.天然堤及越岸沉积以泥质为主,天然堤沿河道呈楔状分布,其近端砂岩含量高,地层厚且倾角较陡; 远端砂岩含量低,地层薄且平缓,侧向连续性好但垂向连续性差.板状砂主要为深水扇前缘非限制性沉积,可分为块型和层型.块型侧向连续性好,同时垂向连通性高.层型侧向连续性好,垂向连通性差.块状搬运沉积主要是低水位期坡上沉积物失稳形成的各类滑塌体及碎屑流,其对下伏地层侵蚀明显,分布广泛,变形构造常见,可作为油气良好的封盖层.Abstract: This paper mainly presents the definition and forming process of deepwater sediment,as well as the characteristics of deepwater sequence stratigraphy and sedimentary elements. The deepwater sediment is deposited in deepwater environment by the gravity flow,forms during the drop and earlier rise of relative water level,and mainly distributes in lowstand systems tract.The deepwater sequence is bounded by condensed section.Mass transport deposits form the beginning of a sequence formation and sit on the sequence boundary.Then they are overlaid by channel-levee deposits.The typical deepwater sedimentary elements include channel,levee and overbank,sheet sand,and mass transport deposits.These elements are systematically deposited in time and space.Channel is the main sediment conduit and deposition area.From updip to downdip area,the sinuosity of channel increases and the flow energy decreases.The channel migrates laterally and evolves from lower low sinuous sand-rich to upper high sinuous mud-rich channel.Levee and overbank are dominated by muddy deposits,and levee distributes along the channel and exhibits wedge shape.The proximal levee is characterized by high content of sandstone,thicker deposit and big dip angle,while the distal levee is characterized by low content of sandstone,thinner deposit,small dip angle,good lateral continuity and poor vertical communication.Sheet sand is the distal unconfined deposits of the deepwater fan and can be divided into conglomerate and layered types,and conglomerate sheet sand has a good lateral continuity and vertical communication.The layered sheet sand has a good lateral continuity and poor vertical communication.Mass transport deposits are the slumps,slides and debris flow due to the slope failure during lowstand period.It can erode the underlying strata,and the deformation structure is very common in mass transport deposit,and it can also serve as a good seal for oil and gas.
-
Key words:
- deepwater deposit /
- sequence stratigraphy /
- sedimentary element /
- channel /
- sheet sand /
- mass transport deposit
-
图 1 层序地层模式及深水层序特点(据Vail, 1987修改)
Fig. 1. Sequence stratigraphy sea-slug model and its characteristics in deepwater environment
-
[1] Beaubouef, R. T., Abreu, V., Van Wagoner, J. C., 2003. Ba-sin4of the Brazos-Trinity slope system, western Gulfof Mexico. In: Roberts, H. H., Rosen, N. C., eds., Theterminal portion of a late Pleistocene lowstand systemstract. Gulf Coast Section—SEPM, Houston. [2] Bouma, A. H., Normark, W. R., Barnes, N. E., 1985. COMFAN: Needs andinitial results. In: Bouma, A. H., Normark, W. R., Barnes, N. E., eds., Submarinefans andrelatedturbidite sys-tems. Springer-Verlag, New York, 7-12. [3] Bouma, A. H., 1962. Sedi mentation of some flysch deposits: Agraphical approach to facies interpretation. Elsevier, New York, 168. [4] Browne, G. H., Slatt, R. M., 2002. Outcrop and behind-out-crop characterization of a Late Miocene sloe fan system, Mt. Messenger Formation, New Zealand. AAPG Bulle-tin, 86 (5): 841-862. [5] Chapin, M. A., Davies, P., Gibson, J. L., et al., 1994. Reservoirarchitecture of turbidite sheet sandstones inlaterally exten-sive outcrops, Ross Formation, western Ireland. In: Wei-mer, P., Bouma, A. H., Perkins, B. F., eds., Submarinefans and turbidite systems. Gulf Coast Section—SEPMFoundation 15th Annual Research Conference, 53-68. [6] Clark, J. D., Pickering, K. T., 1996. Submarine channels: Processes and architecture. Vallis Press, London, 231. [7] Gardner, M. H., Borer, J. M., 2000. Submarine channel ar-chitecture along a slope to basin profile, Brushy Canyon Formation, West Texas. In: Bouma, A. H., Stone, C. G., eds., Ine-grained turbidite systems. AAPG Memoir, 72: 195-214. [8] Haughton, P., Chris, D., Mc Caffrey, W., 2006. Facies pre-diction in turbidite fan systems—Nature and signifi-cance of'Linked Debrites'in sand-rich versus mixedsand-mud systems recent advances in siliciclastic faciesmodels: I mplications for reservoir characterizationII (SEPM). AAPG Annual Convention, April9-12, 2006 Technical Program. [9] Heezen, B. C., 1956. Corrientes de turbidez del Rio Magdalena. Boletin de la Sociedad Geografica de Colombia, 51-52: 135-143. [10] Heezen, B. C., Ewing, M. H., 1952. Turbidity currents andsubmarine slumps, and the1929Grand Banks earth-quake. American Journal of Science, 250: 849-873. doi: 10.2475/ajs.250.12.849 [11] Heezen, B. C., Menzies, R. J., Schneider, E. D., et al., 1964. Congo submarine canyon. AAPG Bulletin, 48: 1126-1149. [12] Ji, Y. L., 1996. Sequence stratigraphy in faulted lacustrinebasin. Petroleum Industry Press, Beijing, 44-50 (in Chinese). [13] Kuenen, P. H., Migliorini, C. I., 1950. Turbidity currents asa cause of graded bedding. Journal of Geology, 58: 91-127. doi: 10.1086/625710 [14] Li, S. T., Pan, Y. L., Lu, Y. C., et al., 2002. Key technologyof prospecting and exploration of subtle traps in lacus-trine fault basins: Sequence stratigraphic researches onthe basis of high resolution seismic survey. Earth Science—Journal of China University of Geosciences, 27 (5): 592-598 (in Chinese with English abstract). [15] Lin, C. S., Pan, Y. L., Xiao, J. X., et al., 2000. Structural slope-break zone: Key concept for stratigraphic sequence analysisand petroleumforecastingin fault subsidence basins. Earth Science—Journal of China University of Geosciences, 25 (3): 260-266 (in Chinese with English abstract). [16] Mayall, M., O'Byrne, C., 2002. Reservoir prediction and de-velopment challenges in turbidite slope channels. OTCConference Proceedings, 14029. [17] Mayall, M., Stewart, I., 2000. The architecture of turbiditeslope channels. In: Weimer, P., Slatt, R. M., Coleman, J. L., eds., Global deep-water reservoirs. Gulf Coast Section—SEPM Bob F. Perkins20th Annual Research Conference, 578-586. [18] Mitchum, R. M. Jr., 1984. Seismic stratigraphic recognitioncriteria for submarine fans. Gulf Coast Section—SEPMFoundation Fifth Annual Research Conference, 63-85. [19] Mitchum, R. M. Jr., 1985. Seismic stratigraphic recognition ofsubmarine fans. In: Berg, O. R., Woolverton, D. G., eds., Seismic stratigraphyII. AAPG Memoir, 39: 117-136. [20] Mitchum, R. M. Jr., Sangree, J. B., Vail, P. R., et al., 1993. Recognizing sequences and systems tracts from welllogs, seismic data and biostratigraphy: Examples fromthe late Cenozoic. In: Weimer, P., Posamentier, H. W., eds., Siliciclastic sequence stratigraphy. AAPGMemoir, 58: 163-199. [21] Morris, W. R., Normark, W. R., 2000. Scaling, sedi mentolog-ic and geometric criteria for comparing modern andancient sandy turbidite elements. In: Weimer, P., Slatt, R. M., Coleman, J. L., et al., eds., Global deep-waterreservoirs: Gulf Coast Section—SEPM Bob F. Perkins 20th Annual Research Conference, 606-628. [22] Mulder, T., Syvitski, J. P. M., Migeon, S., et al., 2003. Marinehyperpycnal flows, initiation, behavior and related deposits: Areview. Marine and Petroleum Geology, 20: 861-882. doi: 10.1016/j.marpetgeo.2003.01.003 [23] Muntingh, A., Brown, L. F., 1993. Sequence stratigraphy of pe-troleumplays, post-rift Cretaceous rocks (Lower Aptian to Upper Maestrichtian), Orange basin, western offshore, South Africa. In: Weimer, P., Posamentier, H. W., eds., Siliciclastic sequence stratigraphy: Recent developments andapplications. AAPG Memoir, 58: 71-98. [24] Mutti, E., 1985. Turbidite systems and their relation to dep-ositional sequences. In: Zuffa, G. G., ed., Provenance ofarenites. NATO-ASI series, Reidel, Dordercht, 65-93. [25] Mutti, E., Normark, W. R., 1987. Comparing examples of mod-ern and ancient turbidite systems: Problems and concepts. In: Leggett, J. K., Zuffa, G. G., eds., Marine clastic sedi m-entology. Grahamand Trotman, London, 1-38. [26] Mutti, E., Normark, W. R., 1991. An integrated approach tothe study of turbidite systems. In: Weimer, P., Link, M. H., eds., Seismic facies and sedi mentary processes ofsubmarine fans and turbidite systems. Springer-Verlag, New York, 7106. [27] Mutti, E., Ricci Lucchi, F., 1972. Le torbiditi dell Appenninosettentrionale: Introduzione all analisi di facies. Memoridella Societa Geologica Italiana, 11: 161-199. [28] Newton, S., Mosher, D., Shipp, C., et al., 2004. I mportanceof mass transport complexes inthe Quaternary develop-ment of the Nile fan, Egypt. OTC Conference Proceed-ings, 16742: 10. [29] Normark, W. R., 1978. Fan valleys, channels, and depositionallobes on modern submarine fans: Characters for recognitionof sandy turbidite environments. American Association of Petroleum Geologists Bulletin, 62: 912-931. [30] Pettingill, H. S., Weimer, P., 2001. World-wide deep waterexploration and production: Past, present andfuture. In: Fillon, R. H., Rossen, N. C., Weimer, P., et al., eds., Petroleum systems of deep-water basins: Global andgulf of Mexico experience. Gulf Coast Section—SEPMSpecial Publication, 1-22. [31] Piper, D. J. W., Pirmez, C., Manley, P. L., et al., 1997. Masstransport deposits of the Amazon fan, In: Flood, R. D., Piper, D. J. W., Klaus, A., et al., eds., Proceed-ings of the Ocean Drilling Program, Scientific Re-sults, 155: 109-146. [32] Posamentier, H. W., Erksine, R. D., 1991. Seismic expres-sion and recognition criteria of ancient submarine fans. In: Weimer, P., Link, M. H., eds., Seismic facies andsedi mentary processes of submarine fans and turbiditesystems. Springer-Verlag, New York, 197-222. [33] Posamentier, H. W., Kolla, V., 2003. Seismic geomorphologyand stratigraphy of depositional elementsin deep-water Set-tings. Journal of Sedimentary Research, 73 (3): 367-388. doi: 10.1306/111302730367 [34] Prather, B. E., Booth, J. R., Steffens, G. S., et al., 1998. Classi-fication, lithologic, calibration, and stratigraphic successionof seismic facies of intraslope basins, deep-water Gulf of Mexico. AAPG Bulletin, 82 (5A): 701-728. [35] Reading, H. G., Richards, M., 1994. Turbidite systems indeep-water basin margins classified by grain size andfeeder system. AAPG Bulletin, 78 (5): 792-822. [36] Richards, M., Bowman, M., Reading, H. G., 1998. Submarine-fan systemsI: Characterization and stratigraphic prediction. Marine and Petroleum Geology, 15 (7): 687-717. [37] Saller, A. H., Noah, J. T., Schneider, R., et al., 2003. Lowstanddeltas and a basin-floor fan, Pleistocene, offshore east Kali-mantan, Indonesia. In: Roberts, H. H., Rosen, N. C., Fil-lon, R. H., eds., Gulf Coast Section—SEPM Bob F. Perkins 23rd Annual Research Conference, 421-440. [38] Shipp, C., Nott, J., Newlin, J., 2004. Variations in jettingperformance in deepwater environments: Geotechnicalcharacteristics and effects of mass transport complexes. OTC Conference, 16751: 11. [39] Stelting, C. E., Bouma, A. H., Stone, C. G., 2000. Fine-grainedturbidite systems: Overview. In: Bouma, A. H., Stone, C. G., eds., Fine-grained turbidite systems. AAPG Memoir72/SEPMSpecial Publication, 68: 1-8. [40] Vail, P. R., et al., 1977. Seismic stratigraphy and global changesin sea level, Parts1-11. AAPG Memoir, 26: 51-212. [41] Vail, P. R., 1987. Seismic stratigraphy interpretation using se-quence stratigraphy, Part1. In: Bally, A. W., ed., Atlas ofseismic stratigraphy. AAPGStudies in Geology, 27: 1-10. [42] Van Wagoner, J. C., Mitchum, R. M., Campion, K. M., etal., 1990. Siliciclastic sequence stratigraphy in welllogs, cores, and outcrops. AAPG Methods in Explora-tion Series, 7: 55. [43] Walker, R. G., 1978. Deep-water sandstone facies and ancientsubmarine fans: Models for explorationfor stratigraph-ic traps. American Association of Petroleum Geologists Bulletin, 62: 932-966. [44] Walker, R. G., 1992. Turbidites and submarine fans. In: Walker, R. G., James, N. P., eds., Facies models response to sealevel change. Geol. Assoc. Can., 239-263. [45] Wei, K. S., 1996. Non-marine sequence stratigraphy—Casestudy in Songliao basin. Geological Publishing House, Beijing, 1-114 (in Chinese). [46] Weimer, P., 1989. Sequence stratigraphy of the Mississippifan (Plio-Pleistocene), Gulf of Mexico. Geo-Marine Let-ters, 9: 185-272. doi: 10.1007/BF02431072 [47] Weimer, P., Posamentier, H. W., 1994. Siliciclastic sequencestratigraphy-recent developments and its applications. AAPG Memoir, 58: 16-18. [48] Weimer, P., Slatt, R. M., 2006. Introcuction to the petroleumgeology of deepwater settings. AAPG Studies in Geolo-gy, 57: 1-10. [49] 纪友亮, 1996. 陆相断陷湖盆层序地层学. 北京: 石油工业出版社, 44-50. [50] 李思田, 潘元林, 陆永潮, 等, 2002. 断陷湖盆隐蔽油藏预测及勘探的关键技术——高精度地震探测基础上的层序地层学研究. 地球科学——中国地质大学学报, 27 (5): 592-598. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205018.htm [51] 林畅松, 潘元林, 肖建新, 等, 2000. "构造坡折带"——断陷盆地层序分析和油气预测的重要概念. 地球科学——中国地质大学学报, 25 (3): 260-266. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200003008.htm [52] 魏魁生, 1996. 非海相层序地层学——以松辽盆地为例. 北京: 地质出版社, 1-114.