Distribution of Skarn Minerals and Sn in the Epidote in Jinchuantang Mining Area, Hunan
-
摘要: 金船塘矿区位于千里山花岗岩岩体西侧, 与东侧柿竹园矿区均是湖南柿竹园特大型W-Sn-Mo-Bi矿床目前正在开采的重要矿区.该矿区块状矽卡岩的矿物特点是: 石榴子石以钙铝石榴子石为主, 辉石存在透辉石-钙铁辉石连续系列, 长石以钙长石大量产出为特点, 硅灰石出现了不常见的锰铁硅灰石; 绿帘石中普遍含Sn, SnO2含量0.2%~2%.根据绿帘石中Sn元素的详细测定和计算, 查明Sn元素在绿帘石中含量与在矿物中位置具幂律函数关系, 计算的分形维为1.93, 从矿物微观的尺度确认Sn等成矿元素在运移和分布上具分形时-空结构, 从而证实自组织的临界状态是柿竹园特大型多金属矿床动力学的基本特点.Abstract: Jinchuantang is an important mining area in operation in the super large W-Sn-Mo-Bi deposit of Shizhuyuan, Hunan Province.The mineral characteristics of the massive skarn of the area are: the garnet is mainly of anorthite; the pyroxene exists as continuous series of dipside-salite-ferrosolite-hedenbergite; the feldspar is mainly of anorthite; the wollastonite is found as a type of a rare mineral- (Mn, Fe) -wollastonite; the sphene is widely-spread as a skarn mineral, and its content of aluminum oxide is relatively high (maximum content being 8.32%wt), and the Sn content of some sphene minerals is also relatively high; Sn is also widely spread in the mineral epidote, and the content of SnO2 is 0.2%-2%.According to the distribution and the content of SnO2 in the mineral epidote, it is found that, the content has the power function with its location, and the calculated fractional-dimension from the distribution of tin oxide is 1.93.From the mineral micro-scale, the transportation and distribution of ore element tin possess the fractional dimension time-location structure, and it is confirmed that the self-constructing critical situation is the basic dynamical characteristic of the super large multi-metal deposit of Shizhuyuan.
-
图 1 千里山花岗岩及周围地质体略图(毛景文等, 1998)
1.第四系; 2.上泥盆统锡矿山组白云质灰岩; 3.上泥盆统余田桥组灰岩和泥灰岩; 4.中泥盆统棋梓桥组白云质灰岩; 5.中泥盆统马涧组砂岩; 6.前寒武震旦系变质砂岩; 7.似斑状黑云母花岗岩; 8.等粒黑云母花岗岩; 9.花岗斑岩; 10.辉绿岩; 11.Sn-Cu矿化似斑状黑云母花岗岩; 12.块状云英岩; 13.块状矽卡岩; 14.地质界线; 15.断裂; 16.采样位置
Fig. 1. Schematic geological map of the Qianlishan grantite stock
图 2 矿物的显微镜图片
A.照相倍数100×正交偏光.1.石榴子石, 自形-半自形粒状, 具光性异常, 显光性环带, 被萤石、绿帘石等矿物交代; 2.次透辉石, 半自形粒状, 被萤石、绿帘石等矿物交代(成分见表 2中7号); 3.铁锰硅灰石, 他形-半自形短柱状, 颗粒比较细小(成分见表 3中13号); 4.绿帘石, 不规则粒状, 颗粒细小, 以干涉色鲜艳多色为特征, 后期蚀变矿物; 5.萤石.B.照相倍数400×单偏光.1.次透辉石, 半自形柱状, 有的颗粒断面上见两组解理, 与石榴子石交生, 含金属矿物包体(成分见表 2中7、8号); 2.石榴子石, 半自形粒状, 被萤石等矿物交代; 3.萤石; 4.辉铋矿.C.照相倍数400×单偏光.1.钙铁辉石, 新鲜者浅棕色, 铁质污染成棕褐色, 交代残余状(成分见表 2中13号); 2.次透辉石, 半自形粒状, 颗粒相对于钙铁辉石要大, (成分见表 2中6号); 3.石榴子石.4.绿帘石, 黄绿色, 交代钙铁辉石和次透辉石等矿物.D.照相倍数510×单偏光.1.钙长石, 半自形-自形粒状, 颗粒大小0.05~0.3 mm (成分见表 3中3号); 2.萤石, 无色, 局部显浅紫色, 不规则粒状, 分布在钙长石间.E.照相倍数400×正交偏光.硅灰石, 针柱状集合体, 成分比较纯(见表 3中6、7号).F.照相倍数400×单偏光.1.铁锰硅灰石, 长柱状, 含有较多的金属矿物包体(成分见表 3中15号); 2.萤石, 无色透明; 3.辉铋矿
Fig. 2. Micrograph of minerals
图 4 一粒由三连晶围绕的绿帘石(a)和绿帘石中SnO2含量(×102)面分布等值线(b)
a 中红线所圈表示分析区范围, 晶体中暗色为裂隙﹐充填有透闪石; b 中带圈的数字为表 6中成分分析的点号
Fig. 4. Epidote rounded by threeling analysis range showed with red line (a); isopleth of SnO2 mass fraction at epidote (b)
表 1 金船塘矿区石榴子石电子探针成分分析结果(%)
Table 1. Electron microprobe analyses of garnet from Jinchuantang mining area
表 2 金船塘矿区辉石的电子探针分析结果
Table 2. Electron microprobe analyses of pyroxene from Jinchuantang mining area
表 3 长石、硅灰石、榍石的电子探针分析结果
Table 3. Electron microprobe analyses of feldspar, wollastanite, sphene
表 4 两种硅灰石的衍射数据
Table 4. XRD data of two wollastanites
表 5 金船塘矿区与柿竹园矿区主要矽卡岩矿物对比
Table 5. Correlated essential skarn mineral at Jinchuantang mining aera with Shizhuyuan mining area
表 6 绿帘石电子探针成分分析结果(%)
Table 6. Electron microprobe analyses of epidote
表 7 绿帘石的分形维参数
Table 7. Parameters of fraction-dimension at epidote
-
[1] Kaye, B. H., 1994. A random walk through fractal dimensions. Translated by: Xu, X. Y., Kang, Y., Chen, X., et al. . Northeastern University Publishing House, Shen yang (in Chinese). [2] Lu, Q., Liu, H. F., 2001. Fraction-dimensional time-spatial structure of multi-metallic deposit in Shizhuyuan: Mineralized Sn and other elements in garnet as an example. Earth Science—Journal of China University of Geosciences, 26 (2): 123-127 (in Chinese with English abstract). [3] Mao, J. W., 1997. Metallogenetic specificity of super giant polymetallic tungsten deposit: Taking the Shizhuyuan deposit as an example. Scientia Geologica Sinica, 32 (3): 351-363 (in Chinese with English abstract). [4] Mao, J. W., Li, H. Y., Song, X. X., et al., 1998. Geology and geochemistry of W, Sn, Mo, Bi polymetallic deposit in Shizhuyuan, Hunan. Geological Publishing House, Beijing (in Chinese). [5] Wang, C. L., Luo, S. H., Xu, Y. Z., et al., 1987. Geology of multi-metallic tungsten deposit in Shizhuyuan. Geological Publishing House, Beijing (in Chinese). [6] Wang, P., Pan, Z. L., Weng, L. B., 1984. Systematic mineralogy. Geological Publishing House, Beijing, 318-320 (in Chinese). [7] Wang, S. F., Zhang, Q. L., 1988. An introduction to geology in Shizhuyuan deposit. Science and Technology of Beijing Press, Beijing (in Chinese). [8] Kaye, B. H., 1994. 分形漫步. 徐新阳, 康雁, 陈旭, 等译. 沈阳: 东北大学出版社. [9] 陆琦, 刘惠芳, 2001. 柿竹园多金属矿床的分形时-空结构. 地球科学——中国地质大学学报, 26 (2): 123-127. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200102004.htm [10] 毛景文, 1997. 超大型钨多金属矿床成矿特殊性——以湖南柿竹园矿床为例. 地质科学, 32 (3): 351-363. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX703.012.htm [11] 毛景文, 李红艳, 宋学信, 等, 1998. 湖南柿竹园钨锡钼铋多金属矿床地质与地球化学. 北京: 地质出版社. [12] 王昌烈, 罗仕徽, 胥友志, 等, 1987. 柿竹园钨多金属矿床地质. 北京: 地质出版社. [13] 王濮, 潘兆橹, 翁玲宝, 1984. 系统矿物学(中册). 北京: 地质出版社, 318-320. [14] 王书凤, 张绮玲, 1988. 柿竹园矿床地质引论. 北京: 北京科学技术出版社.