Petrogenesis and Geological Implication of Serpentinized Peridotites in the Kokshal Segment, South Tianshan
-
摘要: 巴雷公蛇绿混杂岩位于西南天山阔克萨彦岭地区, 代表了南天山古生代洋盆的洋壳残片.通过其中的地幔橄榄岩进行详细的地球化学研究, 分析其岩石成因及其形成环境.主量和微量元素特征显示巴雷公蛇纹石化橄榄岩Ti, Al含量低, Cr (1604~3863), Ni (1719×10-6~2375×10-6) 和Mg#值(0.90~0.92) 高; 样品的稀土强烈亏损(ΣREE=0.28×10-6~0.35×10-6, Yb=0.1~0.11×CI), 呈宽缓的U型REE配分模式; 原始地幔标准化蛛网图显示, 强烈富集Rb、U和Sr, 从LILE (Cs、Rb、Ba、U、K和Sr) 到HREE, 元素含量自左向右随不相容性的逐渐降低, 呈右倾标准化微量元素配分型式; 橄榄岩熔融程度在20%~25%之间, 为俯冲带氧化条件下的熔融残留物.上述特征显示了俯冲板片流体与俯冲带上地幔楔物质的相互作用, 具有俯冲带型地幔橄榄岩特征.结合区域新获得的资料, 指示了南天山早古生代洋盆为一成熟的大洋, 早古生代曾发生过洋内俯冲作用.巴雷公蛇纹石化橄榄岩可能产生在南天山古生代洋内俯冲作用中的大洋岛弧的弧前地幔楔部位.Abstract: South Tianshan is a prominent intracontinental collisional orogenic belt and a key to understand the central Asia tectonic evolution.The serpentinized peridotites from Baleigong ophiolitic mélange was emplaced in the southwestern Kokshal area, which represents lithosphere remnants of the Early Paleozoic Southwestern Tianshan Ocean.The serpentinized peridotites are characterized by low Ti, Al contents and high Cr (1 604-3 863), Ni (1 719×10-6-2 375×10-6), Mg# (0.90-0.92).The right slopping PUM-normalized trace element patterns and the U-shape chondrite-normalized REE pattern reveal that these rocks cannot be residues of simple melt extraction.They can be modeled as restites after 20%-30% partial melting from already depleted mantle in a supra-subduction zone (SSZ) geotectonic setting, in which a constant flux of a slab-derived fliud component added to the mantle wedge during melting.Combined with recent studies, it is concluded that the Paleozoic Southwestern Tianshan Ocean was a mature one that had even experienced a subduction event in Early Paleozoic.The serpentinized peridotites were formed at the fore-arc of the intra-oceanic subduction zone.
-
Key words:
- mantle peridotite /
- supra-subduction zone /
- mantle melting /
- Baleigong /
- Kokshal /
- South Tianshan
-
图 3 (a) 巴雷公蛇纹石化橄榄岩球粒陨石标准化稀土配分模式及(b)微量元素原始地幔标准化蛛网图
参考数据为1.Godard et al., (2000); 2.Melcher et al., (2002); 3.Hartmann and Wedepohl(1990); 4.Parkinson and Peare(1998); 球粒陨石数据引自Sun and McDonough (1989); PUM数据引自McDonough and Sun (1995)
Fig. 3. (a)Chondrite-normalized rare earth element diagrams and (b) whole rock multielement diagrams normalized toprimitive upper mantle(PUM, McDonough and Sun, 1995) for ultramafic samples of Baleigong
图 4 (a) Si / (Mg+Fe) -Ca/ (Mg+Fe) (无水) 图解(El-Rus et al., 2006); (b) Si / (Mg+Fe) -LOI图解
Fig. 4. (a) Rock classification based on the relationship between the atomic ratios Si / (Mg+Fe) and Ca/ (Mg+Fe) (anhydrous) (El-Rus et al., 2006); (b) Si / (Mg+Fe) -LOI diagram
图 5 巴雷公蛇纹石化橄榄岩的Yb-V图解(Pearce and Parkinson, 1993)
图中数字代表地幔熔融程度(%), V-Yb图解上面的落点表示不同氧逸度的熔融分馏趋势; QFM指铁橄榄石-磁铁矿-石英; QFM-1为还原条件下的部分熔融曲线; QFM+1为氧化条件下的部分熔融曲线
Fig. 5. Bivariate diagrams of Yb vs. V (in ppm) for residual peridotites, according to Pearce and Parkinson (1993)
表 1 巴雷公蛇纹岩化橄榄岩主量元素(%) 和微量元素(μg/g) 化学分析组成
Table 1. Whole-rock major and trace element data for peridotites from Baleigong, South Tianshan
-
[1] Bizimis, M., Salters Vincent, J. M., Bona, E., 2000. Trace and REE content of clinopyroxenes fromsupra-subduction zone peridotites: I mplications for melting and enrichment processes in island arcs. Chemical Geology, 165: 67-85. doi: 10.1016/S0009-2541(99)00164-3 [2] Canil, D., 2004. Mildly incompatible elements in peridotites and the origins of mantle lithosphere. Lithos, 77: 375-393. doi: 10.1016/j.lithos.2004.04.014 [3] El-Rus, M. A. A., Neumann, E. R., Peters, V., 2006. Serpentinization and dehydration in the upper mantle beneath Fuerteventura (eastern Canary Islands): Evidence from mantle xenoliths. Lithos, 89: 24-46. doi: 10.1016/j.lithos.2005.09.005 [4] Godard, M., Jousselin, D., Bodinier, J. L., 2000. Relationships between geochemistry and structure beneath a palaeo-spreading centre: A study of the mantle section in the Oman ophiolite. Earth and Planetary Science Letters, 180: 133-148. doi: 10.1016/S0012-821X(00)00149-7 [5] Hartmann, G., Wedepohl, K. H., 1990. Metasomatically altered peridotite xenoliths from the Hessian depression (Northwest Germany). Geochim. Cosmochim. Acta, 54: 71-86. doi: 10.1016/0016-7037(90)90196-R [6] He, G. Q., Li, M. S., Liu, D. Q., et al., 2001. Geotectonic research of Southwest Tianshan andits west adjacent area, China. Xinjiang Geology, 19 (1): 7-11 (in Chinesewith English abstract). [7] Johnson, K. T. M., Dick, H. J. B., Shimizu, N., 1990. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res., 95: 2661-2678. doi: 10.1029/JB095iB03p02661 [8] Kelemen, P. B., Johnson, K. T. M., Kinzler, R. J., et al., 1990. High-field-strength element depletions in arc basalts due to mantle-magma interaction. Nature, 345: 521-524. doi: 10.1038/345521a0 [9] Lan, C. L., Li, J. L., He, S. L., 2007. Ocean-continent subduction withinthe paleotethyan archiopeligicocean from Muztagh ophiolite. Earth Science—Journal of China University of Geosciences, 32 (3): 321-328 (in Chinesewith English abstract). [10] Li, Z-X. A., Lee, C-T. A., 2006. Geochemical investigation of serpentinized oceanic lithospheric mantle in the Feather River ophiolite, California: I mplications for the recycling rate of water by subduction. Chemical Geology, 235: 161-185. doi: 10.1016/j.chemgeo.2006.06.011 [11] Liang, Y. H., Li, W. Q., 2000. Discussion of opening-closing tectonic belt of Paleozoic in south Tianshan mountains, China. Xinjiang Geology, 18 (3): 220-228 (in Chinesewith English abstract). [12] Liang, Y. H., Li, W. Q., Li, W. D., et al., 1999. Ophiolitic emplacement mechanism of Xinjiang. Xinjiang Geology, 17 (4): 344-349 (in Chinese with English ab-stract). [13] Liu, X. M., Liu, Y., Wang, J. Q., et al., 2004. Examination of sample particle sizes and element contamination in grinding by using different kinds of Mortar Mills. Rock and Mineral Analysis, 23 (2): 121-124 (in Chinese with English abstract). [14] McDonough, W. F., Sun, S. S., 1995. The composition of the earth. Chemical Geology, 120: 223-253. doi: 10.1016/0009-2541(94)00140-4 [15] Melcher, E., Meisel, T., Puhl, J., et al., 2002. Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: Constraints from geochemistry. Lithos, 65: 69-112. doi: 10.1016/S0024-4937(02)00161-5 [16] Michael, P. J., 1988. The concentration, behavior and storage of H2O in the suboceanic mantle: I mplications for mantle metasomatism. Geochim. Cosmochim. Acta, 52: 555-566. doi: 10.1016/0016-7037(88)90110-X [17] Monnier, C., Girardeau, J., Pubellier, M., et al., 1999. Petrology and geochemistry of the cyclopsophiolites (Irian Jaya, East Indonesia): Consequences for the Cenozoic evolution of the north Australian margin. Mineral. Petrol., 65: 1-28. doi: 10.1007/BF01161574 [18] Niu, Y., 2004. Bulk-rock major and trace element compositions of abyssal peridotites: I mplications for mantle melting, melt extraction and post-melting processes beneath ocean ridges. J. Petrol., 45: 2423-2458. doi: 10.1093/petrology/egh068 [19] Niu, Y., Hekinian, R., 1997. Basaltic liquids and harzburgitic residues in the Garrett transform: Acase study at fastspreading ridges. Earth Planet. Sci. Lett., 146: 243-258. doi: 10.1016/S0012-821X(96)00218-X [20] Parkinson, I. J., Pearce, J. A., Thirl wall, M. F., et al., 1992. Trace element geochemistry of peridotites from Izu-Bonin-Mariana forearc, Leg 125. Proc. Ocean Drill. Pro-gramSci. Results, 125: 487-506. [21] Parkinson, I. J., Pearce, J. A., 1998. Peridotites from the IzuBonin-Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt-mantle interaction in a suprasubduction zone setting. J. Petrol., 39: 1577-1618. V. doi: 10.1093/petroj/39.9.1577 [22] Pearce, J. A., Lippard, S. J., Roberts, S., 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar, B. P., Howells, M. F., eds., Marginal basin geology. Geological Society of London Special Publication, 16: 77-94. [23] Pearce, J. A., Parkinson, I. J., 1993. Trace element models for mantle melting: Application to volcanic arc petrogenesis. In: Pritchard, H. M., Alabaster, T., Harris, N. B. W., et al., eds., Magmatic processes and plate tectonics. Geological Society of London Special Publication, 76: 373-403. [24] Poli, S., Schmidt, M. W., 1995. H2O transport and release in subduction zones: Experimental constraints on basaltic and andesitic systems. J. Geophys. Res., 100: 22299-22314. doi: 10.1029/95JB01570 [25] Prinzhofer, A., Allègre, C. J., 1985. Residual peridotites and the mechanisms of partial melting. Earth Planet. Sci. Lett., 74: 251-265. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201801007.htm [26] Proenza, J., Gervilla, F., Melgarejo, J. C., et al., 1999. Alrich and Cr-rich chromitites from the Mayarí-Baracoa ophiolitic belt (eastern Cuba): Consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Econ. Geol., 94: 547-566. https://www.cnki.com.cn/Article/CJFDTOTAL-SJJZ201901005.htm [27] Rampone, E., Romairone, A., Hof mann, A. W., 2004. Contrasting bulk and mineral chemistry in depleted mantle peridotites: Evidence for reactive porous flow. Earth and Planetary Science Letters, 218: 491-506. doi: 10.1016/S0012-821X(03)00679-4 [28] Shaw, D. M., 1970. Trace element fractionation during anatexis. Geochim. Cosmochim. Acta, 34: 237-243. doi: 10.1016/0016-7037(70)90009-8 [29] Shi, R. D., Yang, J. S., Xu, Z. Q., et al., 2005. Recognition of MOR-and SSZ-type ophiolites in the Bangong Lake ophiolite mélange, western Tibet: Evidence from two kinds of mantle peridotites. Acta Petrologicaet Mineralogica, 24 (5): 397-408 (in Chinese with English abstract). [30] Stolper, E., Newman, S., 1994. The role of water in the petrogenesis of Mariana trough magmas. Earth Planet. Sci. Lett., 121: 293-325. doi: 10.1016/0012-821X(94)90074-4 [31] Sun, S., McDonough, W. F., 1989. Chemical and isotopicsy stematics of oceanic basalts: I mplications for mantle composition and processes. In: Saunders, A. D., Norry, M. J., eds., Magmatismin the ocean basins. Geological Society of London Special Publication, 42: 313-345. [32] Volkava, N. I., Budanov, V. I., 1999. Geochemical discrimination of metabasalt rocks of the Fan-Karategin transitional blueschist/greenschist belt, South Tianshan, Tajikistan, seamount volcanismand accretionary tectonics. Lithos, 47: 201-216. doi: 10.1016/S0024-4937(99)00019-5 [33] Wang, C., Liu, L., Che, Z. C., et al., 2007a. Geochronology, petrogenesis and significance of Baleigong mafic rocks in Kokshal segment,Southwest Tianshan. Geological Review, 53 (6): 743-754 (in Chinese with English ab-stract). [34] Wang, C., Liu, L., Luo, J. H., et al., 2007b. Late Paleozoic post-collisional magmatism in the southwestern Tian shan orogenic belt: Take the Baleigong pluton in the Kokshal region as an example. Acta Petrologica Sinica, 23 (8): 1830-1840 (in Chinese with English abstract). [35] Wang, X. B., Bao, P. S., 1996. Genetic types of Chinese ophiolite and their metallogenetic specialization. In: Zhang, Q., ed., Study on ophiolites and geodynamics. Geological Publishing House, Beijing, 69-74 (in Chinese). [36] Zheng, J. P., Lu, F. X., Yu, C. M., et al., 2003. Mantle replacement: Evidence from comparison in trace elements between peridotite and diopside fromrefractory and fertile mantle, North China. Earth Science—Journal of China University of Geosciences, 28 (3): 235-240 (inChinese with English abstract). [37] Zheng, J. P., Lu, F. X., Yu, C. M., et al., 2006. Peridotite petrochemistry of the eastern North China: Significance for lithospheric mantle evolution. Earth Science—Journal of China University of Geosciences, 31 (1): 49-56 (in Chinese with English abstract). [38] 何国琦, 李茂松, 刘德全, 等, 2001. 中国西南天山及邻区大地构造研究. 新疆地质, 19 (1): 7-11. doi: 10.3969/j.issn.1000-8845.2001.01.002 [39] 兰朝利, 李继亮, 何顺利, 2007. 古特提斯多岛洋洋-陆俯冲: 木孜塔格蛇绿岩的矿物学证据. 地球科学——中国地质大学学报, 32 (3): 321-328. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703003.htm [40] 梁云海, 李文铅, 2000. 南天山古生代开合带特征及其讨论. 新疆地质, 18 (3): 220-228. doi: 10.3969/j.issn.1000-8845.2000.03.004 [41] 梁云海, 李文铅, 李卫东, 等, 1999. 新疆蛇绿岩就位机制. 新疆地质, 17 (4): 344-349. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI199904008.htm [42] 柳小明, 刘晔, 王建其, 等, 2004. 不同钵体研磨地质样品产生的元素污染及粒度分布探讨. 岩矿测试, 23 (2): 121-124. doi: 10.3969/j.issn.0254-5357.2004.02.009 [43] 史仁灯, 杨经绥, 许志琴, 等, 2005. 西藏班公湖存在MOR型和SSZ型蛇绿岩——来自两种不同地幔橄榄岩的证据. 岩石矿物学杂志, 24 (5): 397-408. doi: 10.3969/j.issn.1000-6524.2005.05.008 [44] 王超, 刘良, 车自成, 等, 2007a. 西南天山阔克萨彦岭巴雷公镁铁质岩石的地球化学特征、年代学及其大地构造意义. 地质论评, 53 (6): 743-754. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200706008.htm [45] 王超, 刘良, 罗金海, 等, 2007b. 西南天山晚古生代后碰撞岩浆作用: 以阔克萨彦岭地区巴雷公花岗岩为例. 岩石学报, 23 (8): 1830-1840. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708004.htm [46] 王希斌, 鲍佩声, 1996. 试论中国蛇绿岩成因及其成矿专属性. 贝: 张旗, 编. 蛇绿岩及地球动力学研究. 北京: 地质出版社, 69-74. [47] 郑建平, 路凤香, 余淳梅, 等, 2003. 地幔置换作用: 华北两类橄榄岩及其透辉石微量元素对比证据. 地球科学——中国地质大学学报, 28 (3) 2: 35-240. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200303000.htm [48] 郑建平, 路凤香, 余淳梅, 等, 2006. 华北东部橄榄岩岩石化学特征及其岩石圈地幔演化意义. 地球科学——中国地质大学学报, 31 (1): 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200601007.htm