Restoration of Late Triassic Fish Trace Makers in Hengshan County, Shaanxi Province, China
-
摘要: 运用遗迹化石恢复造迹动物的形态结构是古遗迹学研究的难点.近年来在陕北横山晚三叠世地层中发现大量完好的鱼类游泳遗迹, 能较好地恢复造迹鱼类鳍的着生位置及相关形态结构, 确定造迹鱼的类型.通过游泳遗迹的形态结构与鱼类形态结构相互关系的分析, 建立了游泳遗迹形态结构参数与造迹鱼类形态结构参数之间的数学关系式.通过计算显示同一遗迹种的鱼鳍间距与鱼体长度比值一定, 这与现代鱼类形体特征一致.应用该方法恢复了研究区两遗迹种的造迹鱼类, 其中Undichna britannica造迹鱼类的尾鳍和臀鳍间距与体长之比为0.3, 臀鳍和胸鳍间距与体长之比为0.45~0.5, 尾鳍和腹鳍间距与体长之比为0.49~0.5, 与邻区相同层位发现的鱼类实体化石Wayaobulepis zichangensis相关特征一致.另一遗迹种Undichna tricosta恢复的尾鳍和臀鳍间距与体长之比约为0.35, 可能与本区相同层位发现的Saurichthys huanshenensis特征相似.Abstract: It is a palaeoichnological puzzle to restore the biological morphology of the trails makers by analyzing trace fossils. Many intact fish swimming trail fossils, which can reflect some biologic features of the trace-maker fish, such as body length, distribution of fish fins, shape and structure of fish fins, have been unearthed recent years from the Late Triassic of Hengshan County, Shaanxi Province. The mathematical formulations based on the analysis of the relationship between the morphological feature parameters of trace and trace producers indicate that, the certain ratio of the distance of fish fins and body length is consistent with that of modern fish. The result of the calculation of the data from fish swimming traces shows that, the trace Undichna britannica was made by these fishes, whose distance between caudal fin and anal fin is 0. 3 of the body length, the distance between anal fin and pectoral fins is 0. 5 of the body length, and the distance between caudal fin and ventral fins is between 0. 49-0. 5 of the body length. These features are consistent with the those of a fossil fish, named Wayaobulepis zichangensia sp. nov. in the stratum in close proximity to the trace fossil. The ratio of the distance between caudal fin and anal fin, resulted from the other trace Undichna tricosta, is about 0. 35, which is similar with the features of the fossil fish named Saurichthys huanshenensis in the same stratum.
-
Key words:
- trace fossil /
- fish swimming trails /
- Late Triassic /
- northern Shaanxi /
-
图 1 陕北横山晚三叠世4种鱼类游泳遗迹(据卢宗盛和陈斌, 1998;卢宗盛等, 2003a, 2003b;Lu et al., 2004资料综合)
(a)Undichna britannica;(b)U.tricosta;(c)U.prava;(d)U.bina;Ct.尾鳍刻画的波线;At.臀鳍刻画的波线;Vt.腹鳍刻画的波线;Pt.胸鳍拖拽痕;Am.腹部突起物拖拽痕
Fig. 1. Four kinds of fish swimming trails in Late T riassic of Hengshan, Shaanxi Province, China
图 2 新采集的鱼类游泳遗迹(标本采自卢宗盛和陈斌(1998)文献中庙沟剖面第7层)
a.Undichna tricosta标本号:05W-1;b. U. britannica标本号:05W-2(B, C)
Fig. 2. Fish swimming trails collected recently
图 4 鱼鳍着生位置与遗迹参数的几何关系
a.鱼游泳时,鳍相对位置图解; b.尾鳍与臀鳍位置关系图解;c.臀鳍与腹鳍位置关系图解;d.鱼类游泳迹波线相位差与鳍位差关系示意图.C、A、V、P分别为尾、臀、腹、胸鳍的触底点;AC、AA、AV、AP分别为尾、臀、腹、胸鳍刻画波线的振幅;ΔSCA、ΔSAV、ΔSVP分别为尾鳍与臀鳍、臀鳍与腹鳍、腹鳍与胸鳍间距在遗迹中轴线方向上的投影长度,本文称其为鳍位差;φ为尾部摆角,ψ为躯干部摆角;LCA、LAV分别为尾鳍与臀鳍、臀鳍与腹鳍的间距;Ct.尾鳍刻画的波线;At.臀鳍刻画的波线; Vc.腹鳍刻画的平行双波线的中迹线; Pc. —对近平行的胸鳍拖拽痕的中迹线;ωCA、ωAV、ωVP、ωAP分别为尾鳍与臀鳍、臀鳍与腹鳍、腹鳍与胸鳍、臀鳍与胸鳍、波线间的相位差
Fig. 4. Geometric relationship between the location of fins and trace parameters
图 5 遗迹化石Undichna britannica恢复的鱼体特征与实体化石量度的鱼体特征对比
▲由遗迹U.britannica计算的尾鳍和臀鳍间距与体长之比;●由遗迹U. britannica计算的臀鳍和胸鳍间距与体长之比;+由遗迹U. tricosta计算的尾鳍和腹鳍间距与体长之比;△实体化石Wayaobulep is z ichangensis量度的尾鳍与臀鳍间距与体长之比;O陕北相同层位发现的实体化石Wayaobulepis zichangensis量度的臀鳍和胸鳍间距与体长之比
Fig. 5. Features comparison between fish body restored by trace fossils and fish body measured by substantial fossils Undichna britannica
图 6 造迹鱼类部分形体特征复原及与邻区同层位实体化石对比
(a)由遗迹Undichna britannica恢复的造迹鱼类;(b)实体化石Wayaobulepis zichangensis的复原图(据苏德造,1999);(c)由遗迹Undichna tricosta恢复的造迹鱼类
Fig. 6. The restoration of the building-trace fish body features and the comparison with the substantial fish fossil in the same age
表 1 遗迹标本测量数据及计算的鱼体特征(单位:cm)
Table 1. Measurement data of trace fossils and the calculation of fish-body features
-
[1] Anderson, A. M., 1976. Fish trails from the Early Permian of South Africa. Palaeontology, 19: 397-409. [2] Archer, A. W., Maples, C.G., 1984. Trace-fossil distribution across a marine to nonmarine gradient in the Pennsylvanian of southwestern Indiana. Journal of Paleontologp, 58: 448-466. [3] Bainbridge, R., 1962. Caudal fin and body movement in pro pulsion of some fish. Jour. Exp. Biol. , 40: 23-56. [4] Buatois, L. A., Mangano, M. G., 1993. Trace fossils from a Carboniferous turbiditic lake: Implications for the recognition of additional nonmarine ichnofacies. Ichnos, 2: 237-258. doi: 10.1080/10420949309380098 [5] Buatois, L. A., Mangano, M. G., Maples, C. G., 1997. The paradox of nonmarine ichnofaunas in tidal rhythmites: Integrating sedimentologic and ichnologic data from the Late Carboniferous of eastern Kansas, USA. Palaios, 12: 467-481. doi: 10.2307/3515384 [6] Buatois, L. A., Mangano, M. G., Maples, C. G., et al., 1998. Ichnology of an Upper Carboniferous fluvio estuarine paleovalley: The Tonganoxie sandstone, Buildex Quarry, eastern Kansas, USA. Journal of Paleontology, 72 (1): 152-180. doi: 10.1017/S0022336000024094 [7] Gibert, J. M de., 2001. Undichna gosiutensis, isp. Nov. : A new fish trace fossil of Utah. Ichnos, 8: 15-22. [8] Gibert, J. M de., Buatois, L. A., Fregenal-Martinez, M. A., et al., 1999. The fish trace fossil Undichna from the Cretaeous of Spain. Palaeontology. 42 (3): 407-427. https://www.researchgate.net/publication/229455894_The_fish_trace_fossil_Undichna_from_the_Cretaceous_of_Spain [9] Haubold, H., Buta, R. J., Rindsberg, A. K., et al., 2005. Atlas of Union Chapel Mine vertebrate trackways and swimming traces. Alabama Paleontological Society, 1: 207-276. https://www.researchgate.net/publication/242716638_ATLAS_OF_UNION_CHAPEL_MINE_INVERTEBRATE_TRACKWAYS_AND_OTHER_TRACES [10] Higgs, R., 1988. Fish trails in the Upper Carboniferous of south-west England. Palaeontology, 31: 255-272. https://www.sciencedirect.com/science/article/pii/S0031018201002577 [11] Lu, Z. S., Chen, B., 1998. Discovery of Late Triassic fish trails (Undichna) in Hengshan county, Shaanxi, China. Acta Palaeontologica Sinica, 37 (1): 76-84 (in Chinese with English abstract). [12] Lu, Z. S., Hao, Z.K., Chen, B, 2003a. New evidences of Late Triassic fish swimming traces in Hengshan county, Shaanxi Province, China. Acta Palaeontologica Sinica, 42 (2): 266-273 (in Chinese with English abstract). [13] Lu, Z. S., Hou, J. X., Chen, B., 2004. Genetic interpretation of fish swimming trails and calculation of fish-body length in Late Triassic Hengshan, Shaanxi Province, China. Science in China (Ser. D), 47(3): 272-279. doi: 10.1360/02YD0273 [14] Martin, A. J., Pyenson, N. D., 2005. Behavioral significance of vertebrate trace fossils from the Union Chapel site. Alabama Paleontological Society, 1: 59-73. doi: 10.1007%2F978-94-017-8721-5_12 [15] Rodrigo, S.G., Joaquin, J. M., 2001. Fish and tetrapod trace fossils from the Upper Carboniferous of Puertollano, Spain. Palaeogeography, Palaeoclimatology, Palaeo-ecology, 171 : 1-28. doi: 10.1016/S0031-0182(01)00257-7 [16] Simon, T., Hagdorn, H., Hagdorn, M. K., et al., 2003. Swimming trace of a Coelacanth fish from the Lower Keuper of south-west Germany. Palaeontology. 46 (5): 911-926. doi: 10.1111/1475-4983.00326 [17] Stanley, D. J., 1971. Fish-produced markings on the outer continental margin east of the middle Atlantic states. Journal of Sedimentary Petrology, 41 (1): 159-170. https://pubs.geoscienceworld.org/sepm/jsedres/article-abstract/41/1/159/113239/Fish-produced-markings-on-the-outer-continental [18] Su, D.Z., 1984. A new Palaeoniscoid fish from the Yanchang Group of North Shaanxi and its biostratigraphic significance. Vertebrata Palasiatica, 22(4): 261-268 (in Chinese with English abstract). [19] Su, D.Z., 1999. A new palaeoniscoid fish from the Upper Triassic of Zichang, northern Shaanxi. Vertebrata Pala-siatica, 37 (4): 257 -266 (in Chinese with English abstract). [20] Turek, V., 1989. Fish and amphibian trace fossils from Westphalian sediments of Bohemia. Palaeontology, 32: 623-643. [21] Warren, A., 1972. Queensland trace fossils pose a 230 million old problem. Australian Natural History, 17: 160-162. [22] Zhou, X. H., Liu, X. T., 1957. Fossil fishes from Hengshan, Shaanxi. A cta Palaeontologica Sinicaa, 5 (2): 295-305 (in Chinese with English abstract). [23] 卢宗盛, 陈斌, 1998. 陕西横山晚三叠世鱼类游泳遗迹(Undichna)的发现. 古生物学报, 37 (1): 76-84. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX801.004.htm [24] 卢宗盛, 郝朝坤, 陈斌, 等, 2003a. 陕西横山晚三叠世鱼类游泳遗迹化石新材料. 古生物学报, 42(2): 266-276. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX200302012.htm [25] 卢宗盛, 侯建湘, 陈斌, 等, 2003b. 陕西横山晚三叠世鱼类游泳遗迹的成因解释及鱼体长度估算. 中国科学(D辑), 33(7): 650-657. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200307005.htm [26] 苏德造, 1984. 陕北延长群-新古鱈类及其生物地层意义. 古脊椎动物学报, 22(4): 261-268. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZD198404001.htm [27] 苏德造, 1999. 记陕北子长晚三叠世-新的古鱈类. 古脊椎动物学报, 37(4): 257-266. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZD199904001.htm [28] 周晓和, 刘宪亭, 1957. 陕西横山麒麟沟鱼化石. 古生物学报, 5(2): 295-305. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX195702006.htm