Distributions and Geodynamic Implications of High Field Strength Elements in Rutile from Ultrahigh Pressure Eclogites
-
摘要: 利用LA-ICP-MS对CCSD-MH超高压榴辉岩中金红石进行了详细的原位微区微量元素组成分析.金红石中高场强元素Nb和Ta含量主要受全岩Nb、Ta和TiO2含量控制, Zr、Hf含量比较稳定基本不受全岩含量影响.粒间金红石中, 同一颗粒金红石核部Zr含量系统高于边部, 而边部则出现了明显的Pb和Sr富集特征.CCSD-MH榴辉岩中金红石与全岩的Nb/Ta比值呈现明显的不一致性.全岩Nb/Ta比值明显低于金红石且与全岩TiO2含量负相关, 而金红石的Nb/Ta比值与全岩Nb、Ta含量和Nb/Ta比值没有明显的相关关系.金红石和全岩之间非完全耦合的Nb/Ta组成表明, 金红石并非形成于原岩的结晶过程中而是在超高压变质作用过程中形成, 尽管金红石是榴辉岩中Nb、Ta含量的主要载体矿物, 但金红石的Nb/Ta比值并不一定能完全代表全岩的特征, 而与全岩Nb、Ta和TiO2的含量有关.粒间金红石核部Zr含量所记录的温度与粒径之间具有明显的正相关性, 反映金红石中的Zr在其形成后没有封闭.粒间金红石所表现出的明显的边部富集Pb和Sr的特征, 反映了后期流体活动对金红石组成的影响.这些研究结果为金红石中Zr在高温下的扩散作用和后期流体活动的影响提供了重要证据, 这可能是利用金红石Zr含量地质温度计计算的苏鲁-大别榴辉岩变质温度(598~827℃) 偏低的主要原因.Abstract: Trace element compositions of rutiles in eclogites from the Chinese Continental Scientific Drilling (CCSD) main hole were analyzed using LA-ICP-MS.The results indicate that Nb and Ta contents of rutiles are significantly controlled by whole rock compositions, while Zr and Hf show no obvious dependence on the whole rock compositions.Coupled with enrichments of Pb and Sr at the rim of the interstitial rutiles, Zr contents decrease from the core to the rim.Nb/Ta ratios of rutiles are much higher than those of the parent eclogites.Moreover, Nb/Ta ratios of rutile show no correlation with Nb and Ta concentrations and Nb/Ta ratios of the parent eclogites, while Nb/Ta ratios of eclogites correlate negatively with the TiO2 contents.These observations suggest that rutiles were metamorphic products of the Triassic ultrahigh pressure (UHP) metamorphism, rather than formed by crystallization in equilibrium with melt.The partially decoupling between rutiles and parent eclogites in terms of Nb/Ta ratios implies that although rutiles are the dominant carriers of Nb and Ta in eclogites, they might not completely reflect the Nb/Ta ratios of the parent eclogites, especially for low-Ti eclogites (TiO2 < 0.5%).Nb/Ta ratios of rutiles are dominated by the combination of Nb, Ta and TiO2 contents of the parent eclogites.The positive correlations between temperatures recorded by Zr contents and the size of rutile indicate that Zr in rutile was not immediately closed after rutile formation.On the other hand, the enrichments of Pb and Sr at the rim of the interstitial rutiles suggest influence of subsequent fluids on the compositions of rutiles, which could have affected Zr of the rutiles as well.This study provides the evidence for the Zr diffusion at a high temperature and fluid activity that could have contributed to the lower temperatures (598-827℃) recorded by Zr-in-rutile for the eclogites from the Dabie-Sulu UHP terrane.
-
Key words:
- CCSD-MH /
- eclogite /
- rutile /
- trace element /
- Nb/Ta ratio
-
图 2 金红石Nb、Ta含量及Nb/Ta比值与全岩Nb、Ta和TiO2含量及Nb/Ta比值的关系(图例同图 1)
相关系数(R) 由各样品平均值计算所获得.图 2a中相关系数计算未包括高Mg榴辉岩SD0019 (该样品金红石中Nb含量极高)
Fig. 2. Plots of Nb and Ta contents and Nb/Ta ratios of rutiles versus Nb, Ta and TiO2contents and Nb/Ta ratios of parenteclogites
图 4 CCSD榴辉岩中金红石温度变化特征
a、b.不同产状金红石Zr含量温度计计算结果.包裹体金红石温度低于粒间金红石温度, 而粒间金红石边部温度低于核部温度; c.利用Zack et al. (2004)温度计获得的粒间金红石核部温度对颗粒直径的变化; d.粒径200μm的金红石在不同温度条件下其中心位置Zr发生扩散所需要的时间及金红石中Zr封闭温度和粒径的关系.温度计算是根据Dodson (1973)的封闭温度公式和Cherniak et al. (2007)金红石中Zr扩散系数进行的, 分别计算了冷却速率为1℃Ma-1 (点线)、10℃Ma-1 (实线) 和100℃Ma-1 (虚线) 条件下的封闭温度
Fig. 4. Temperature variations of rutile in eclogites from CCSD
图 5 榴辉岩和金红石Nb/Ta比值与Nb的变化关系
大别榴辉岩全岩据Chavagnac and Jahn (1996)、Zhai and Cong (1996)、Liou et al. (1997)、Jahn (1998)、刘贻灿等(2000)、吴元保等(2000); 苏鲁榴辉岩全岩据Jahn et al. (1996)、Jahn (1998)、Zhang et al. (2000)、孙景贵和胡受奚(2000)、王大志等(2006).CCSD榴辉岩数据包括本文及张泽明等(2003, 2004)、刘勇胜等(2005)、戚学祥等(2006).原始地幔(PM) 值据Sun and McDonough (1989)
Fig. 5. Nb/Ta ratios versus Nb contents for eclogites and rutiles
图 6 对榴辉岩Nb/Ta比值与TiO2、Nb和Ta含量关系的模拟计算(图例同图 1)
计算中假设榴辉岩由石榴石+绿辉石+金红石组成, 全岩TiO2含量由石榴石+绿辉石中溶解的TiO2和金红石中的TiO2组成.金红石中TiO2含量取为99%, 并以SD006中金红石、石榴石和绿辉石Nb、Ta和TiO2含量平均值代表金红石、石榴石和绿辉石中Nb、Ta和TiO2含量
Fig. 6. Model calculations of Nb/Ta ratios versus TiO2, Nb and Ta contents for eclogites
图 7 含金红石辉长岩分离结晶作用过程中Nb/Ta比值的变化
计算中以大陆溢流玄武岩平均值(Nb=15.1 ppm, Ta=1.07 ppm) 作为原始熔体, 假设结晶辉长岩的矿物组成为60%~55%斜长石+25%单斜辉石+10%斜方辉石+4.5%橄榄石+0%~5%金红石.根据Nb、Ta在斜长石(Dunn and Sen, 1994)、单斜辉石(Hauri et al., 1994)、斜方辉石(Dunn and Sen, 1994)、橄榄石(Ulmer, 1989) 以及金红石(Jenner et al., 1993) 与熔体之间的分配系数, 分别计算了分离结晶程度为30%和70%时全岩和金红石的Nb、Ta含量和Nb/Ta比值.图中虚线代表不同金红石含量(增量为0.5%)
Fig. 7. Nb/Ta variations during fractionation crystallization of rutile-bearing gabbro
图 8 榴辉岩及大洋中脊玄武岩中Zr对TiO2变化关系
大别和苏鲁榴辉岩数据来源同图 5.阴影区域为大洋中脊玄武岩(MORB), 据http://petdb.columbia.petdb/
Fig. 8. Plot of Zr versus TiO2for eclogites and the middle ocean ridge basalts (MORB)
表 1 CCSD-MH榴辉岩全岩主、微量元素组成
Table 1. Major and trace element contents of the CCSD-MH eclogites
表 2 榴辉岩中金红石微量元素的LA-ICP-MS测定结果
Table 2. Trace element compositions of rutiles in eclogites analyzed by LA-ICP-MS
表 3 金红石Zr含量地质温度计计算结果
Table 3. Temperatures calculated by the Zr in rutile thermometer
-
[1] Audetat, A., Keppler, H., 2005. Solubility of rutile in subduction zone fluids, as determined by experiments in the hydrothermal diamond anvil cell. Earth and Planetary Science Letters, 232 (3-4): 393-402. doi: 10.1016/j.epsl.2005.01.028 [2] Ayers, J. C., Dunkle, S., Gao, S., et al., 2002. Constraints on timing of peak and retrograde metamorphismin the Dabie Shan ultrahigh-pressure metamorphic belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology, 186 (3-4): 315-331. doi: 10.1016/S0009-2541(02)00008-6 [3] Banno, S., Enami, M., Hirajima, T., et al., 2000. Decompression P-T path of coesite eclogite to granulite from Weihai, eastern China. Lithos, 52 (1-4): 97-108. doi: 10.1016/S0024-4937(99)00086-9 [4] Brenan, J. M., Shaw, H. F., Phinney, D. L., et al., 1994. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: Implications for high field strength element depletions inisland-arc basalts. Earth and Planetary Science Letters, 128 (3-4): 327-339. doi: 10.1016/0012-821X(94)90154-6 [5] Brophy, J. G., Marsh, B. D., 1986. On the origin of high-alumina arc basalt and the mechanics of melt extraction. J. Petrol. , 27: 763-789. doi: 10.1093/petrology/27.4.763 [6] Chavagnac, V., Jahn, B. M., 1996. Coesite-bearing eclogites from the Bixiling complex, Dabie Mountains, China: SmNd ages, geochemical characteristics and tectonic implications. Chemical Geology, 133 (1-4): 29-51. doi: 10.1016/S0009-2541(96)00068-X [7] Chen, J., Xu, Z. Q., Li, X. P., 2005. The formation of nanometer twins of rutile and its textural characteristics in UHP eclogite. Acta Petrologica Sinica, 21 (2): 399-404 (in Chinese with English abstract). [8] Chen, Z. Y., Wang, D. H., Chen, Y. C., et al., 2006a. Mineral geochemistry of rutilein eclogite anditsimplications. Earth Science—Journal of China University of Geosciences, 31 (4): 533-538, 550 (in Chinese with English abstract). [9] Chen, Z. Y., Yu, J. J., Xu, J., et al., 2006b. EMP trace elements analysis of rutile in eclogite. J. Chin. Electr. Microsc. Soc. , 25 (Suppl.): 295-296 (in Chinese). [10] Cherniak, D. J., Manchester, J., Watson, E. B., 2007. Zr and Hf diffusionin rutile. Earthand Planetary Science Letters, 261 (1-2): 267-279. doi: 10.1016/j.epsl.2007.06.027 [11] Dodson, M. H., 1973. Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol. , 40: 259-274. doi: 10.1007/BF00373790 [12] Dunn, T., Sen, C., 1994. Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: A combined analytical and experimental study. Geochimica et Cosmochimica Acta, 58 (2): 717-733. doi: 10.1016/0016-7037(94)90501-0 [13] Foley, S. F., Barth, M. G., Jenner, G. A., 2000. Rutile/melt partition coefficients for trace elements and an assessment of theinfluence of rutile onthe trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta, 64 (5): 933-938. doi: 10.1016/S0016-7037(99)00355-5 [14] Foley, S. F., Massimo, T., Riccardo, V., 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417: 837-840. doi: 10.1038/nature00799 [15] Gao, T. S., Zheng, Y. F., Chen, R. X., 2006. Applications of the different types of mineral-pair geothermometers to eclogite at Huangzhenin the Dabie orogen. Acta Petrologica Sinica, 22 (7): 1957-1968 (in Chinese withEnglish abstract). [16] Green, T. H., 2000. New partition coefficient determinations pertinent to hydrous melting processes in subduction zones. State of the Arc 2000: Processes and timescales. Wellington, 92-95. [17] Green, T. H., Pearson, N. J., 1987. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochimica et Cosmochimica Acta, 51 (1): 55-62. doi: 10.1016/0016-7037(87)90006-8 [18] Green, T. H., Sie, S. H., Ryan, C. G., et al., 1989. Proton microprobe-determined partitioning of Nb, Ta, Zr, Sr and Y between garnet, clinopyroxene and basaltic magma at high pressure and temperature. Chemical Geology, 74 (3-4): 201-216. doi: 10.1016/0009-2541(89)90032-6 [19] Hacker, B. R., Ratschbacher, L., Webb, L., et al., 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie orogen, China. Earth and Planetary Science Letters, 161: 215-230. doi: 10.1016/S0012-821X(98)00152-6 [20] Hauri, E. H., Wagner, T. P., Grove, T. L., 1994. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology, 117: 149-166. doi: 10.1016/0009-2541(94)90126-0 [21] Horng, W. S., Hess, P. C., 2000. Partition coefficients of Nb and Ta between rutile and anhydrous haplogranite melts. Contrib. Mineral. Petrol. , 138: 176-185. doi: 10.1007/s004100050016 [22] Jahn, B. M., 1998. Geochemical andisotopic characteristics of UHP eclogites and ultramafic rocks of the Dabie orogen: Implications for continental subduction and collisional tectonics. In: Hacker, B. R., Liou, J. G., eds., When continents collide: Geodynamics and geochemistry of ultrahigh-pressure rocks. Kluwer Academic Publishers, Netherlands, 203-239. [23] Jahn, B. M., Cornichet, J., Cong, B. L., et al., 1996. Ultrahigh-εNd eclogites froman ultrahigh-pressure metamorphic terrane of China. Chemical Geology, 127 (1-3): 61-79. doi: 10.1016/0009-2541(95)00108-5 [24] Jenner, G. A., Foley, S. F., Jackson, S. E., et al., 1993. Determination of partition coefficients for trace elements in high pressure-temperature experimental run products by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS). Geochimica et Cosmochimica Acta, 57 (23-24): 5099-5103. doi: 10.1016/0016-7037(93)90611-Y [25] Kamber, B. S., Ewart, A., Collerson, K. D., et al., 2002. Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contrib. Mineral. Petrol. , 144: 38-56. doi: 10.1007/s00410-002-0374-5 [26] Klemme, S., Prowatke, S., Hametner, K., et al., 2005. Partitioning of trace elements between rutile and silicate melts: Implications for subduction zones. Geochimica et Cosmochimica Acta, 69 (9): 2361-2371. doi: 10.1016/j.gca.2004.11.015 [27] Li, Q., Li, S. Q., Zheng, Y. F., et al., 2003. Ahigh precision U-Pb age of metamorphic rutile in coesite-bearing eclogite from the Dabie Mountains in Central China: A newconstraint on the cooling history. Chemical Geology, 200 (3-4): 255-265. doi: 10.1016/S0009-2541(03)00194-3 [28] Li, S. Q., Jagoutz, E., Chen, Y. I., et al., 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochimicaet Cosmochimica Acta, 64 (6): 1077-1093. doi: 10.1016/S0016-7037(99)00319-1 [29] Li, X. F., Chen, Z. Y., Wang, R. C., et al., 2005. Mineralogical and geochemical features of hair-like rutilein rocked quartzin Donghai, Jiangsu Province, China. Acta Petrologica Sinica, 21 (2): 475-481 (in Chinese with English abstract). [30] Liou, J. G., Zhang, R. Y., Jahn, B. M., 1997. Petrology, geochemistry and isotope data on an ultrahigh-pressure jadeite quartzite from Shuanghe, Dabie Mountains, eastcentral China. Lithos, 41 (1-3): 59-78. doi: 10.1016/S0024-4937(97)82005-1 [31] Liu, D. Y., Jian, P., Kr ner, A., et al., 2006. Dating of prograde metamorphic events deciphered frome pisodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth and Planetary Science Letters, 250 (3-4): 650-666. doi: 10.1016/j.epsl.2006.07.043 [32] Liu, F. L., Xue, H. M., Xu, Z. Q., et al., 2006a. SHRI MP U-Pb zircon dating fromeclogite lens in marble, Shuanghe area, Dabie UHPterrane: Restriction on the prograde, UHP and retrograde metamorphic ages. Acta Petrologica Sinica, 22 (7): 1761-1778 (in Chinese with English abstract). [33] Liu, F. L., Gerdes, A., Liou, J. G., et al., 2006b. SHRI MP U/Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China: Constraints on prograde, ultrahigh pressure and retrograde metamporphic ages. J. Metamorph. Geol. , 24 (7): 569-589. doi: 10.1111/j.1525-1314.2006.00655.x [34] Liu, F. L., Gerdes, A., Zeng, L. S., et al., 2008. SHRI MP U-Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHPterrane, eastern China. Geochim. Cosmochim. Acta, doi: 10.1016/j.gca.2008.04.007. [35] Liu, Y. C., Li, S. G., Xu, S. T., et al., 2006. Ultrahigh-pressure metamorphic evidence for gneiss fromthe northern Dabie complex, Central China: Message fromzircon. Acta Petrologica Sinica, 22 (7): 1827-1832 (in Chinese with English abstract). [36] Liu, Y. C., Xu, S. T., Li, S. G., et al., 2000. Eclogites from the northern Dabie Mountains, eastern China: Geochemical characteristics, Sr-Nd isotopic compositions and tectonic implications. Sciencein China (Series D), 43: 178-188. doi: 10.1007/BF02911943 [37] Liu, Y. S., Iong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese Continental Scientific Drill. Chem. Geol. , 247: 133-153. doi: 10.1016/j.chemgeo.2007.10.016 [38] Liu, Y. S., Zhang, Z. M., Lee, C. T., et al., 2005. Decoupled high-Ti fromlow-Nb (Zr) of eclogites fromthe CCSD: Implications for magnetite fractional crystallization in basalt chamber. Acta Petrologica Sinica, 21 (2): 339-346 (in Chiese with English abstract). [39] Miller, C., Zanetti, A., Thoni, M., et al., 2007. Eclogitisation of gabbroic rocks: Redistribution of trace elements and Zr in rutile thermometryin an Eo-Alpine subduction zone (eastern Alps). Chemical Geology, 239 (1-2): 96-123. doi: 10.1016/j.chemgeo.2007.01.001 [40] Morris, J. D., Leeman, W. P., Tera, F., 1990. The subducted component inisland arc lavas: Constraints from Be isotopes and B-Be systematics. Nature, 344: 31-36. doi: 10.1038/344031a0 [41] Nielsen, R. L., Beard, J. S., 2000. Magnetite-melt HFSE partitioning. Chemical Geology, 164 (1-2): 21-34. doi: 10.1016/S0009-2541(99)00139-4 [42] Nielsen, R. L., Forsythe, L. M., Gallahan, W. E., et al., 1994. Major and trace-element magnetite-melt equilibria. Chemical Geology, 117 (1-4): 167-191. doi: 10.1016/0009-2541(94)90127-9 [43] Qi, X. X., Tang, Z. M., Yan, L., 2006. Geochemical characteristics of garnet-amphibolite fromthe pre-pilot hole of the Chinese Continental Scientific Drilling (CCSD-PP2) and its geological significance. Earth Science—Journal of China University of Geosciences, 31 (4): 539-550 (in Chinese with English abstract). [44] Ringwood, A. E., 1990. Slab-mantle interactions 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chem. Geol. , 82: 187-207. doi: 10.1016/0009-2541(90)90081-H [45] Rudnick, R. L., Barth, M., Horn, I., et al., 2000. Rutilebearing refractory eclogites: Missinglink between continents and depleted mantle. Science, 287: 278-281. doi: 10.1126/science.287.5451.278 [46] Rudnick, R. L., Gao, S., Ling, W. L., et al., 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos, 77 (1-4): 609-637. doi: 10.1016/j.lithos.2004.03.033 [47] Schmidt, M. W., Dardon, A., Chazot, G., et al., 2004. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth and Planetary Science Letters, 226 (3-4): 415-432. doi: 10.1016/j.epsl.2004.08.010 [48] Shannon, R. D., 1976. Revised effective ionicradii and systematic studies of interatomic distances in chalides and halcogenides. Acta Crystallographica Section A, 32 (5): 751-767. doi: 10.1107/S0567739476001551 [49] Spear, F. S., Wark, D. A., Cheney, J. T., et al., 2006. Zr-inrutile thermometry in blueschists from Sifnos, Greece. Contrib. Mineral. Petrol. , 152: 375-385. doi: 10.1007/s00410-006-0113-4 [50] Stalder, R., Foley, S. F., Brey, G. P., et al., 1998. Mineralaqueous fluid partitioning of trace elements at 900-1200℃ and 3.0-5.7GPa: Newexperimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochimicaet Cosmochimica Acta, 62 (10): 1781-1801. doi: 10.1016/S0016-7037(98)00101-X [51] Sun, J. G., Hu, S. X., 2000. Research on geochemical variation during the retrograde metamorphic processes of eclogite—From the eclogite bodiesinthe Rongcheng-Weihai rock belt of Sulu (Jiangsu-Shandong) UHMB. J. Mineral Petrol. , 20 (1): 17-23 (in Chinese with English abstract). [52] Sun, S. S., McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A. D., Norry, M. J., eds., Magmatismin the ocean basins. Geological Society Special Pubications, London, 313-345. [53] Tatsumi, Y., Nakamura, N., 1986. Composition of aqueous fluid from serpentinite in the subducted lithosphere. Geochem. J. , 20: 191-196. doi: 10.2343/geochemj.20.191 [54] Ul mer, P., 1989. Partitioning of high field strength elements among olivine, pyroxenes, garnet and calc alkaline picrobasalt: Experimental results and an application. International Journal of Mass Spectrometry and Ion Physics, : 42-47. [55] Ul mer, P., Trommsdorff, V., 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268: 858-861. doi: 10.1126/science.268.5212.858 [56] Wan, Y., Li, R. W., Wilde, S. A., et al., 2005. UHP metamorphismand exhumation of the Dabie orogen, China: Evidence from SHRI MP dating of zircon and monazite froma UHP granitic gneiss cobble fromthe Hefei basin. Geochim. Cosmochim. Acta, 69 (17): 4333-4348. doi: 10.1016/j.gca.2005.03.055 [57] Wang, D. Z., Zhang, Z. M., Shen, K., et al., 2006. Origin of Ti-rich eclogite and rutile deposit in the Donghai area of the southern Sulu UHP metamorphic belt, China. Geological Bulletin of China, 25 (7): 839-849 (in Chinesewith English abstract). [58] Wang, Q. C., Ishi watari, A., Zhao, Z. Y., et al., 1993. Coesitebearing granulite retrograded fromeclogite in Weihai, eastern China. Eur. J. Mineral. , 5 (1): 141-152. doi: 10.1127/ejm/5/1/0141 [59] Wang, R. C., Wang, S., Qiu, J. S., et al., 2005. Rutile in the UHP eclogites fromthe CCSD main drillhole (Donghai, eastern China): Trace-element geochemistry and metallogenetic implications. Acta Petrologica Sinica, 21 (2): 465-474 (in Chinese with English abstract). [60] Wang, S., Wang, R. C., Qiu, J. S., et al., 2006. Mineral inclusions in rutile of Sulu UHP eclogites fromthe main drill hole of CCSD, Donghai. Acta Petrologica et Mineralogica, 25 (1): 61-70 (in Chinese with English abstract). [61] Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. , 151 (4): 413-433. doi: 10.1007/s00410-006-0068-5 [62] Wu, Y. B., Chen, D. G., Cheng, H., et al., 2000. Geochemical characteristics of retrometamorphic eclogite in Raobazai, northern Dabie Mountains. Seismology and Geology, 22 (Suppl.): 99-103 (in Chinese with English abstract). [63] Wu, Y. B., Zheng, Y. F., Zhao, Z. F., et al., 2006. U-Pb, Hf and Oisotope evidence for two episodes of fluid-assisted zircon growthin marble-hosted eclogites fromthe Dabie orogen. Geochimicaet Cosmochimica Acta, 70 (14): 3743-3761. doi: 10.1016/j.gca.2006.05.011 [64] Xiao, Y. L., Sun, W. D., Hoefs, J., et al., 2006. Making continental crust through slab melting: Constraints from niobium-tantalum fractionation in UHP metamorphic rutile. Geochimicaet Cosmochimica Acta, 70 (18): 4770-4782. doi: 10.1016/j.gca.2006.07.010 [65] Xiong, X. L., Adam, J., Green, T. H., 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218 (3-4): 339-359. doi: 10.1016/j.chemgeo.2005.01.014 [66] Xu, J., Chen, Y. C., Wang, D. H., et al., 2004. Titaniumm ineralization in the ultrahigh-pressure metamorphic rocks from Chinese Continental Scientific Drilling 100-2000m main hole. Acta Petrologica Sinica, 20 (1): 119-126 (in Chinese with English abstract). [67] Xu, Z. Q., 2004. The scientific goals and investigation progress of the Chinese Continental Scientific Drilling Project. Acta Petrologica Sinica, 20 (1): 1-8 (in Chinese with English abstract). [68] Yao, Y., Ye, K., Liu, J., et al., 2000. Atransitional eclogite to high pressure granulite-facies overprint on coesite-eclogite at Taohang in the Sulu ultrahigh-pressure terrane, eastern China. Lithos, 52 (1-4): 109-120. doi: 10.1016/S0024-4937(99)00087-0 [69] Yu, J. J., Xu, J., Chen, Z. Y., et al., 2006. Trace element geochemistry of rutiles in the eclogites fromthe Chinese Continental Scientific Drilling Project Main Hole. Acta Geologica Sinica, 80 (12): 1835-1841 (in Chinese with English abstract). [70] Zack, T., Kronz, A., Foley, S. F., et al., 2002. Trace element abundances in rutiles fromeclogites and associated garnet mica schists. Chemical Geology, 184: 97-122. doi: 10.1016/S0009-2541(01)00357-6 [71] Zack, T., Moraes, R., Kronz, A., 2004. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer. Contrib. Mineral. Petrol. , 148: 471-488. doi: 10.1007/s00410-004-0617-8 [72] Zhai, M. G., Cong, B. L., 1996. Major and trace element geochemistry of eclogites and related rocks. In: Cong, B. L., ed., Ultrahigh-pressure metamorphic rocks in the Dabieshan-Sulu region of China. Science Press and Kluwer Academic Publishers, Netherlands, 69-89. [73] Zhang, B. H., Liu, Y. S., Zong, K. Q., et al., 2006. Geochemical behavior of trace elements during retrograde metamorphismof eclogites: Study on the retrograde eclogites fromthe CCSD main hole. Acta Petrologica Sinica, 22 (T): 1833-1844 (in Chinese with English abstract). [74] Zhang, R. Y., Hirajima, T., Banno, S., et al., 1995. Petrology of ultrahigh-pressure rocks fromthe southern Su-Lu region, eastern China. J. Metamorph. Geol. , 13: 659-675. doi: 10.1111/j.1525-1314.1995.tb00250.x [75] Zhang, R. Y., Liou, J. G., Cong, B. L., 1994. Petrogenesis of garnet-bearing ultramafic rocks and associated eclogites in the Su-Lu ultrahigh-P metamorphic terrane, eastern China. J. Metamorph. Geol. , 12: 169-186. doi: 10.1111/j.1525-1314.1994.tb00012.x [76] Zhang, Z. M., Xu, Z. Q., Liu, F. L., et al., 2003. Petrology and petrochemistry of UHP metamorphic rocks fromthe Sulu orogenic belt, eastern central China. Acta Geologica Sinica, 77 (4): 478-491 (in Chinese with English abstract). [77] Zhang, Z. M., Xu, Z. Q., Liu, F. L., et al., 2004. Geochemistry of eclogites fromthe main hole (100-2050m) of the Chinese Continental Scientific Drilling Project. Acta Petrologica Sinica, 20 (1): 27-42 (in Chinese with English abstract). [78] Zhang, Z. M., Xu, Z. Q., Xu, H. F., 2000. Petrology of ultrahigh-pressure eclogites fromthe ZK703 drill hole in the Donghai, eastern China. Lithos, 52 (1-4): 35-50. doi: 10.1016/S0024-4937(99)00083-3 [79] Zhang, Z. M., You, Z. D., Han, Y. J., et al., 1996. Petrology, metamorphic process and genesis of the Dabie-Sulu eclogite belt, eastern-central China. Acta Geologica Sinica, 9: 134-156. [80] Zhang, Z. M., Zhang, J. F., You, Z. D., et al., 2005. Ultrahigh-pressure metamorphic P-T-t path of the Sulu orogenic belt, eastern central China. Acta Petrologica Sinica, 21 (2): 257-270 (in Chinese with English abstract). [81] Zhao, R., Zhang, R. Y., Liou, J. G., et al., 2007. Petrochemistry, oxygen isotopes and U-Pb SHRI MP geochronology of mafic-ultramafic bodies from the Sulu UHP terrane, China. J. Metamorph. Geol. , 25 (2): 207-224. doi: 10.1111/j.1525-1314.2007.00691.x [82] Zhao, Z. F., Zheng, Y. F., Gao, T. S., et al., 2006. Isotopic constraints on age and duration of fluid-assisted highpressure eclogite-facies recrystallization during exhumation of deeply subducted continental crust in the Sulu orogen. J. Metamorph. Geol. , 24: 687-702. doi: 10.1111/j.1525-1314.2006.00662.x [83] Zheng, Y. F., Fu, B., Gong, B., et al., 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks fromthe Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth-Science Reviews, 62 (1-2): 105-161. doi: 10.1016/S0012-8252(02)00133-2 [84] 陈晶, 许志琴, 李旭平, 2005. 超高压榴辉岩中金红石的纳米级微构造特征及成因机制探讨. 岩石学报, 21 (2) 399-404. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200502013.htm [85] 陈振宇, 王登红, 陈毓川, 等, 2006a. 榴辉岩中金红石的矿物地球化学研究及其意义. 地球科学——中国地质大学学报, 31 (4): 533-538, 550. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200604010.htm [86] 陈振宇, 余金杰, 徐珏, 等, 2006b. 榴辉岩中金红石的微量元素电子探针分析. 电子显微学报, 25 (增刊): 295-296. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV2006S1163.htm [87] 高天山, 郑永飞, 陈仁旭, 2006. 大别造山带黄镇榴辉岩矿物不同类型地质温度计应用和对比. 岩石学报, 22 (7): 1957-1968. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200607023.htm [88] 李晓峰, 陈振宇, 王汝成, 等, 2005. 江苏东海毛发状水晶中金红石矿物学、地球化学特征. 岩石学报, 21 (2): 475-481. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200502022.htm [89] 刘福来, 薛怀民, 许志琴, 等, 2006a. 大别超高压变质带的进变质、超高压和退变质时代的准确限定: 以双河大理岩中榴辉岩锆石SHRI MP U-Pb定年为例. 岩石学报, 22 (7): 1761-1778. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200607002.htm [90] 刘贻灿, 李曙光, 徐树桐, 等, 2006. 北大别片麻岩的超高压变质证据——来自锆石提供的信息. 岩石学报, 22 (7): 1827-1832. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200607008.htm [91] 刘贻灿, 徐树桐, 李曙光, 等, 2000. 大别山北部榴辉岩的地球化学特征和Sr, Nd同位素组成及其大地构造意义. 中国科学(D辑), 30 (增刊): 99-107. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2000S1012.htm [92] 刘勇胜, 张泽明, Lee, C. T., 等, 2005. CCSD主孔高Ti榴辉岩非耦合的高Ti、低Nb (Zr) 特征: 对玄武质岩浆房中磁铁矿分离结晶作用的指示. 岩石学报, 21 (2): 339-346. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201503017.htm [93] 戚学祥, 唐哲民, 闫玲, 2006. 中国大陆科学钻探预先导孔(CCSD-PP2) 榴闪岩的地球化学组成及其地质意义. 地球科学——中国地质大学学报, 31 (4): 539-550. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200604011.htm [94] 孙景贵, 胡受奚, 2000. 榴辉岩退变质过程的地球化学研究——以荣成-威海岩段的榴辉岩体为例. 矿物岩石, 20 (1): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200001003.htm [95] 王大志, 张泽明, 沈昆, 等, 2006. 南苏鲁超高压变质带东海地区富钛榴辉岩及金红石矿的成因. 地质通报, 25 (7): 839-849. doi: 10.3969/j.issn.1671-2552.2006.07.011 [96] 王汝成, 王硕, 邱检生, 等, 2005. CCSD主孔揭示的东海超高压榴辉岩中金红石: 微量元素地球化学及其成矿意义. 岩石学报, 21 (2): 465-474. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200502021.htm [97] 王硕, 王汝成, 邱检生, 等, 2006. CCSD主孔超高压榴辉岩金红石中的矿物包裹体研究. 岩石矿物学杂志, 25 (1): 61-70. doi: 10.3969/j.issn.1000-6524.2006.01.008 [98] 吴元保, 陈道公, 程昊, 等, 2000. 北大别饶拔寨退变质榴辉岩的地球化学特征. 地震地质, 22 (增刊): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ2000S1013.htm [99] 徐珏, 陈毓川, 王登红, 等, 2004. 中国大陆科学钻探主孔100-2000m超高压变质岩中的钛矿化. 岩石学报, 20 (1): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401009.htm [100] 许志琴, 2004. 中国大陆科学钻探工程的科学目标及初步成果. 岩石学报, 20 (1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401000.htm [101] 余金杰, 徐珏, 陈振宇, 等, 2006. 中国大陆科学钻探工程主孔榴辉岩中金红石微量元素地球化学特征. 地质学报, 80 (12): 1835-1841. doi: 10.3321/j.issn:0001-5717.2006.12.006 [102] 张斌辉, 刘勇胜, 宗克清, 等, 2006. 榴辉岩退变质过程中的微量元素地球化学行为: 对CCSD主孔退变质榴辉岩的研究. 岩石学报, 22 (T): 1833-1844. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200607009.htm [103] 张泽明, 许志琴, 刘福来, 等, 2003. 南苏鲁造山带的超高压变质岩及岩石化学研究. 地质学报, 77 (4): 478-491. doi: 10.3321/j.issn:0001-5717.2003.04.004 [104] 张泽明, 许志琴, 刘福来, 等, 2004. 中国大陆科学钻探工程主孔(100-2050m) 榴辉岩岩石化学研究. 岩石学报, 20 (1): 27-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401002.htm [105] 张泽明, 张金凤, 游振东, 等, 2005. 苏鲁造山带超高压变质作用及其P-T-t轨迹. 岩石学报, 21 (2): 257-270. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200502001.htm