Characteristics of Rock-Forming Minerals of Analcime Phonolite in the Damxung Area, Qinghai-Tibet Plateau: Evidence for Primary Analcime
-
摘要: 方沸石响岩是一种罕见的碱性火山岩.采用电子探针、粉晶X射线衍射、扫描电镜、拉曼光谱等研究了青藏高原当雄地区方沸石响岩的主要造岩矿物种属、共生关系和结晶顺序.研究表明, 斑晶由方沸石和长石组成.方沸石为岩浆结晶晚期形成的原生矿物; 长石均发育“次生边”结构, 中央相为斜长石, 边缘相为碱性长石.基质由碱性长石、次透辉石、钛磁铁矿和褐铁矿组成.原生矿物的结晶顺序是: 斑晶长石的中央相→斑晶方沸石+斑晶长石边缘相富钾长石→基质长石→次透辉石→钛磁铁矿和褐铁矿.利用方沸石-熔体平衡估算出方沸石结晶时岩浆的温度和压力条件分别为600~640 ℃和(5~13) ×108 Pa, 考虑到青藏高原当时已形成巨厚地壳, 认为岩浆房存在于地壳深部.Abstract: Analcime phonolite is a rare alkaline volcanic rock.Using the electron microprobe, X-ray powder diffraction, scanning electron microscope, and Raman spectroscopy, this paper studies characteristics of rock-forming minerals, coexisting relations and crystallization sequences of the analcime phonolite from the Damxung area, Qinghai-Tibet plateau.Phenocrysts are euhedral analcime and feldspar, while the groundmass is composed of K-feldspar, salite, titanomagnetite, and limonite.Analcime is primary and crystallizes in the late magmatic stage.Phenocrystal feldspars have secondary rims of K-feldspar, and their cores are plagioclases.Crystallization sequences are the plagioclase core of feldspar phenocrysts, analcime and K-feldspar in the rim of feldspar phenocrysts, K-feldspar in the groundmass, salite, titanomagnetite and limonite.The balance between analcime and melt places constraints on the P/T regime (5-13) ×108 Pa and 600-640 ℃ respectively, implying depths of origin in the deep crust.
-
Key words:
- primary analcime /
- feldspar /
- phonolite /
- mineralogical characteristics /
- Lhasa block
-
图 1 鱼鳞山组火山岩的TAS图解(据Le Maitre, 1989)
▲本文数据; ▽引自廖思平等(2002); □引自刘焱等(2003);○引自李佑国等(2005); Pc.苦橄玄武岩; B.玄武岩; O1.玄武安山岩; O2.安山岩; O3.英安岩; S1.粗面玄武岩; S2.玄武粗安岩; S3.粗安岩; T.粗面岩/粗面英安岩; R.流纹岩; U1.碱玄岩/碧玄岩; U2.响岩质碱玄岩; U3.碱玄质响岩; Ph.响岩; F.副长石岩
Fig. 1. TAS diagram of volcanic rocks of the Yulinshan Formation
图 3 方沸石的粉晶X射线图图谱(a)和二次电子扫描电镜图(b)
(a)分析由中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成.仪器型号: D/MAX-M B粉晶術射仪: 靶: Cu; 滤波片; Ni;狭缝: 0.15 mm: 管电压/电流: 40 kV/40 mA; 起始角; 30°; 终止角: 65°; 扫描速度: 2°/min; 温度: 20 ℃; 湿度: 60%
Fig. 3. X-ray powder diffraction pattern (a) and secondary electron SEM image (b) of the analcime in analcime phonolite
图 5 方沸石响岩中长石成分投影图(a) 和拉曼图谱(b) (据赵珊茸等, 2003)
(b) 图分析由中国地质大学(武汉) 地质过程与矿产资源国家重点实验室激光拉曼室完成.仪器型号为RM-1000型, 实验条件为氩离子激光器, 波长为514.5 nm, 狭缝宽度为25 μm, 叠加次数为3次; (A) TM48-2-c; (B) TM48-2-r; (C) TM50-2-r; (D) TM50-2-c
Fig. 5. Projection drawing of feldspars' composition (a) and Raman spectrum (b) of feldspars in analcime phonolite
表 1 方沸石响岩主要矿物的电子探针分析结果(%)
Table 1. Electron microprobe analyses results of major minerals in analcime phonolite
表 2 方沸石响岩各矿物晶体化学式
Table 2. Crystallochemical formulas of minerals in analcime phonolite
-
[1] Chi, X. G., Li, C., Jin, W., et al., 1999. Spatio-temporal evolution of Cenozoic volcanismin northern Tibet and the uplifting of Qinghai-Tibet plateau. Geological Review, 45 (Suppl.): 978-986 (in Chinese with English abstract). [2] Church, B. N., 1978. Shackanite and related analcite-bearing lavas in British Columbia. Canadian Journal of Earth Sciences, 15: 1669-1672. doi: 10.1139/e78-172 [3] Church, B. N., 1979. Shackanite and related analcite-bearing lavas in British Columbia: Discussion and reply. Canadian Journal of Earth Sciences, 16: 1298-1302. doi: 10.1139/e79-115 [4] Cundari, A., 1973. Petrology of the leucite-bearing lavas in New South Wales. Journal of the Geological Society of Australia, 20: 465-492. doi: 10.1080/00167617308728829 [5] Ding, L., Zhang, J. J., Zhou. Y., et al., 1999. Tectonic implication on the lithosphere evolution of the Tibet plateau: Petrology and geochemistry of sodic and ultrapotassic volcanism in northern Tibet. Acta Petrologica Sinica, 15 (3): 408-421 (in Chinese with English abstract). [6] Edgar, A. D., 1979. Shackanite and related analcite-bearing lavas in British Columbia: Discussion. Canadian Journal of Earth Sciences, 16: 1298-1299. doi: 10.1139/e79-115 [7] Ferguson, L. J., Edgar, A. D., 1978. The petrogenesis and origin of the analcime in the volcanic rocks of the Crowsnest Formation, Alberta. Canadian Journal of Earth Sciencess, 15: 69-77. doi: 10.1139/e78-006 [8] Giampaolo, C., Lombardi, G., 1994. Thermal behaviour of analcimes from two different genetic environments. European Journal of Mineralogy, 6: 285-289. doi: 10.1127/ejm/6/2/0285 [9] Huang, Y., Mou, S. Y., Lu, D. B., et al., 2004. Deliberation on characteristic and epoch of the volcanic rocks of the Yulinshan Formation in the Yulinshan area, North Tibet. Guizhou Geology, 21 (3): 148-151, 147 (in Chinese with English abstract). [10] Karlsson, H. R., Clayton, R. N., 1991. Analcime phenocrysts in igneous rocks: Primary or secondary? American Mineralogist, 76: 189-199. [11] Karlsson, H. R., Clayton, R. N., 1993. Analcime phenocrysts in igneous rocks: Primary or secondary?—reply. American Mineralogist, 78: 230-232. [12] Kim, K., Burley, B. J., 1971. Phase equilibria in the system NaAlSi3O8-NaAlSiO4-H2O with special emphasis on the stability of analcite. Canadian Journal of Earth Sciences, 8: 311-337. doi: 10.1139/e71-033 [13] Larsen, E. S., Buie, B. F., 1938. Potash analcime and pseudoleucite from the Highwood Mountains of Montana. American Mineralogist, 23: 837-849. [14] Le Maitre, R. W., 1989. Classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks. Blackwell Scientific Publications, Oxford, 193. [15] Li, C., Zhu, Z. Y., Chi, X. G., 2002. Isotope choronology of volcanic rocks in the Yulinshan Formation in the Gerze area, northern Tibet. Geological Bulletin of China, 21 (11): 732-734 (in Chinese with English abstract). [16] Li, Y. G., Mo, X. X., Ma, R. Z., et al., 2005. Petrology andages of the Cenozoic volcanic rocks in the Huochetoushan, North Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 32 (5): 441-446 (in Chinese with English abstract). [17] Liao, S. P., Chen, Z. H., Luo, X. C., et al., 2002. Discovery of leucite phonolite in the Tangra Yumco area, Tibet and its geological significance. Geological Bulletin of China, 21 (11): 735-738 (in Chinese with English abstract). [18] Lippard, S. J., 1973. The petrology of phonolites from the Kenya rift. Lithos, 6: 217-234. doi: 10.1016/0024-4937(73)90083-2 [19] Liu, S., Chi, X. G., Li, C., et al., 2001. Geochemistry and genesis of Cenozoic volcanic rock series in northern Tibet. Journal of Changchun University of Science and Technology, 31 (3): 230-235 (in Chinese with English abstract). [20] Liu, S., Hu, R. Z., Chi, X. G., et al., 2003. Geochemistry, series subdivision and petrogenetic interpretation of Cenozoic volcanic rocks in northern Tibet. Geological Journal of China Universities, 9 (2): 279-292 (in Chinese with English abstract). [21] Luth, R. W., Bowerman, M., 2004. Microtextural and powder-diffraction study of analcime phenocrysts in volcanic rocks of the Crowsnest Formation, southern Alberta, Canada. Canadian Mineralogist, 42 (3): 897-903. doi: 10.2113/gscanmin.42.3.897 [22] MacKenzie, D. E., White, A. J. R., 1970. Phonolite globulesin basanite from Kiandra, Australia. Lithos, 3: 309-317. doi: 10.1016/0024-4937(70)90037-X [23] MacKenzie, J. D., 1914. The Crowsnest volcanics. Canadian Geological Survey Museum Bulletin 4 (Geological Series), 20: 1-37. [24] Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10 (3): 135-148 (in Chinese with English abstract). [25] Morse, S. A., 1969. Syenites. Carnegie Institution of Washington Year Book, 67: 112-120. [26] Pearce, T. H., 1970. The analcite-bearing volcanic rocks of the Crowsnest Formation, Alberta. Canadian Journal of Earth Sciences, 7: 46-66. doi: 10.1139/e70-004 [27] Pearce, T. H., 1993. Analcite phenocrysts in igneous rocks: Primary or secondary? —discussion. American Mineralogist, 78: 225-229. [28] Peters, T. J., Luth, W. C., Tuttle, O. F., 1966. The melting of analcite solid solutions in the system NaAlSiO4-NaAlSi3O8-H2O. American Mineralogist, 51: 736-753. [29] Prelevic, D., Foley, S. F., Cvetkovic, V., et al., 2004. The analcime problem and its impact on the geochemistry of ultrapotassic rocks from Serbia. Mineralogical Magazine, 68 (4): 633-648. doi: 10.1180/0026461046840209 [30] Putnis, A., Putnis, C., Giampaolo, C., 1994. The microtexture of analcime phenocrysts in igneous rocks. European Journal of Mineralogy, 6: 627-632. doi: 10.1127/ejm/6/5/0627 [31] Roux, J., Hamilton, D., 1976. Primary igneous analcite—An experimental study. Journal of Petrology, 17: 244-257. doi: 10.1093/petrology/17.2.244 [32] Wilkinson, J. F. G., 1968. Analcimes from some potassic igneous rocks and aspects of analcime-rich igneous assemblages. Contributions to Mineralogy and Petrology, 18: 252-269. doi: 10.1007/BF00398895 [33] Wilkinson, J. F. G., 1977. Analcime phenocrysts in a vitrophyric analcimite: Primary or secondary? Contributions to Mineralogy and Petrology, 64: 1-10. doi: 10.1007/BF00375282 [34] Woolley, A. R., Symes, R. F., 1976. The analcime-phyric phonolites (blairmorites) and associated analcime kenytes of the Lupata Gorge, Mocambique. Lithos, 9: 9-15. doi: 10.1016/0024-4937(76)90052-9 [35] Xiong, X., Wang, J. Y., Teng, J. W., 2007. Deep mechanical background for the Cenozoic volcanismin the Tibetan Plateau. Earth Science—Journal of China University of Geosciences, 32 (1): 1-6 (in Chinese with English abstract). [36] Xu, P. C., Li, R. B., 1996. Raman spectroscopy in geosciences. Shaanxi Science & Technology Press, xi′an, 57-66 (in Chinese). [37] Yang, R. H., Dong, J. L., Li, C., et al., 2002. Major characteristics and temperature-pressure conditions of the minerals in Cenozoic volcanic rocks in the northern Tibetan plateau. Geoscience, 16 (2): 153-158 (in Chinese with English abstract). [38] Zhao, S. R., Bian, Q. J., Ling, Q. C., 2003. Mineralogy. China University of Geosciences Press, Wuhan, 163 (in Chinese). [39] Zhao, Z. M., Li, R. S., Ji, W. H., et al., 2007. The characteristics of geochemical and its tectonic significance from the adakite of Palaeogene volcanic rocks in northern Qiangtang area, Qinghai-Tibetan plateau. Earth Science—Journal of China University of Geosciences, 32 (5): 651-680 (in Chinese with English abstract). [40] 迟效国, 李才, 金巍, 等, 1999. 藏北新生代火山作用的时空演化与高原隆升. 地质论评, 45 (增刊): 978-986. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1999S1144.htm [41] 丁林, 张进江, 周勇, 等, 1999. 青藏高原岩石圈演化的记录: 藏北超钾质及钠质火山岩的岩石学与地球化学特征. 岩石学报, 15 (3): 408-421. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199903008.htm [42] 黄勇, 牟世勇, 卢定彪, 等, 2004. 藏北鱼鳞山地区鱼鳞山组火山岩的特征及时代探讨. 贵州地质, 21 (3): 148-151, 147. doi: 10.3969/j.issn.1000-5943.2004.03.002 [43] 李才, 朱志勇, 迟效国, 2002. 藏北改则地区鱼鳞山组火山岩同位素年代学. 地质通报, 21 (11): 732-734. doi: 10.3969/j.issn.1671-2552.2002.11.007 [44] 李佑国, 莫宣学, 马润则, 等, 2005. 藏北火车头山新生代火山岩的岩石特征与时代. 成都理工大学学报(自然科学版), 32 (5): 441-446. doi: 10.3969/j.issn.1671-9727.2005.05.001 [45] 廖思平, 陈振华, 罗小川, 等, 2002. 西藏当惹雍错地区白榴石响岩的发现及地质意义. 地质通报, 21 (11): 735-738. doi: 10.3969/j.issn.1671-2552.2002.11.008 [46] 刘燊, 迟效国, 李才, 等, 2001. 藏北新生代火山岩系列的地球化学及成因. 长春科技大学学报, 31 (3): 230-235. doi: 10.3969/j.issn.1671-5888.2001.03.006 [47] 刘燊, 胡瑞忠, 迟效国, 等, 2003. 藏北高原新生代火山岩地球化学系列划分及成因分析. 高校地质学报, 9 (2): 279-292. doi: 10.3969/j.issn.1006-7493.2003.02.014 [48] 莫宣学, 赵志丹, 邓晋福, 等, 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10 (3): 135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013 [49] 熊熊, 王继业, 滕吉文, 2007. 青藏高原新生代火山活动的深部力学背景. 地球科学——中国地质大学学报, 32 (1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701000.htm [50] 徐培苍, 李如璧, 1996. 地学中的拉曼光谱. 西安: 陕西科学技术出版社, 57-66. [51] 杨日红, 董建乐, 李才, 等, 2002. 藏北新生代火山岩主要造岩矿物特征及温压条件. 现代地质, 16 (2): 153-158. doi: 10.3969/j.issn.1000-8527.2002.02.006 [52] 赵珊茸, 边秋娟, 凌其聪, 2003. 矿物学. 武汉: 中国地质大学出版社, 163. [53] 赵振明, 李荣社, 计文化, 等, 2007. 青藏高原北羌塘地区古近纪火山岩中埃达克岩的地球化学特征及其构造意义. 地球科学——中国地质大学学报, 32 (5): 651-680. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705010.htm