Characteristics of Clay Minerals in the Northern South China Sea and Its Implications for Evolution of East Asian Monsoon since Miocene
-
摘要: 应用X射线衍射(XRD)、扫描电子显微镜(SEM) 和X射线能谱(EDS) 分析技术对南海北部ODP1146站中新世以来(~20 Ma) 粘土矿物的组成、结晶学特征、微形貌和化学成分进行了研究, 分析了粘土矿物的物质来源及其记录的东亚季风演化历史.1146站粘土矿物组合的总体特点是以伊利石和蒙脱石为主, 高岭石和绿泥石含量较低.物源分析表明, 1146站蒙脱石主要来自于吕宋岛, 伊利石和绿泥石来自于珠江和台湾(长江), 而高岭石则主要来自于珠江.1146站的粘土矿物不仅被南海周围物源的同时代气候所控制, 而且为相互消长的不同传输作用(表层洋流) 的强度所影响.1146站(伊利石+绿泥石) /蒙脱石比值可以用来作为东亚季风演化的矿物学标志.指标变化显示出东亚冬季风强度和冬季风相对夏季风的强度在15 Ma、8 Ma和3 Ma左右发生了3次显著加强, 结果可以与黄土、北太平洋风尘沉积、南海微体古生物记录等很好对比.青藏高原的阶段性隆升可能促进了东亚季风的这3次加强.Abstract: Clay mineral assemblages, crystallinity, chemistry and micromorphology of clay particles in sediments from ODP Site 1146 in the northern South China Sea (SCS) were analyzed and used to trace sediment sources and obtain proxy records of past changes in the East Asian monsoon climate since the Miocene based on a multi-approach including X-ray diffraction (XRD) and scanning electron microscope combined with energy dispersive X-ray spectrometer (SEM-EDS).Clay minerals mainly consist of illite and smectite, with associated chlorite and kaolinite.The illite at ODP Site 1146 has very well-to-well crystallinity, and smectite has moderate-to-poor crystallinity.In SEM the smectite particles at ODP Site 1146 often appear cauliflower-like, a typical micromorphology of volcanic smecites.The smectite at ODP Site 1146 is relatively rich in Si element, but poor in Fe, very similar to the smectite from the West Philippine Sea.In contrast, the chemical composition of illite at ODP Site 1146 has no obvious differences from those of the Loess, Yellow River, Yangtze River, and Pearl River.Sediment source studies indicate that smectite originates mainly from Luzon, kaolinite from the Pearl River and illite and chlorite from the Pearl River, Taiwan and/or the Yangtze River respectively.The clay mineral assemblages at ODP Site 1146 were not only controlled by the continental weathering regimes surrounding the SCS but also by the changing strength of the transport processes.The ratios of (illite+chlorite) /smectite at ODP Site 1146 were adopted as proxies for East Asian monsoon evolution.The consistent variation of this clay proxy with those from loess, eolian deposition in the North Pacific and planktonic and benthic foraminifera, and black carbon in the SCS since 20 Ma shows that three profound shifts of the East Asian winter monsoon intensity, aridity in the Asian inland and the intensity of winter monsoon relative to summer monsoon, occurred at ~ 15 Ma, ~ 8 Ma and the youngest at about 3 Ma.The phased uplift of the Himalaya-Tibetan plateau may have played a significant role in strengthening the Asian monsoon at 15 Ma, 8 Ma and 3 Ma.
-
Key words:
- clay minerals /
- sediment source analysis /
- East Asian monsoon /
- Miocene /
- South China Sea
-
图 1 ODP184航次站位和南海的陆源物质输入示意图
图中白色星星表示所取河流样品位置; 空心圈表示西菲律宾表层样位置; 黑色实体箭头和数字所表示的年悬浮物输送量数据来自Milliman and Meade (1983)、Milliman and Kao (2005);表层洋流分布来自Liu et al., (2003)
Fig. 1. Map showing ODP Leg 184 drilling sites in the SCS and terrigenous materials delivering to the sea
图 6 近20 Ma以来东亚季风演化的海洋和陆地记录
其中: 北太平洋ODP885/886站风尘堆积速率来自Rea et al. (1998);祁南QA-1剖面黄土沉积速率来自Guo et al. (2002);1146站N. dutertrei (%) 来自Zheng et al. (2004);ODP1148底栖有孔虫δ18O来自Cheng et al. (2004), 粗线表示经过了三点滑动平均
Fig. 6. Marine and terrestrial records of the East Asian monsoon evolution since 20 Ma
表 1 ODP1146站、黄土、珠江口沉积物EDS分析结果(%)
Table 1. Chemical compositions of clay minerals in sediments from ODP Site 1146, loess and Pearl River by EDS analysis
表 2 不同地区粘土矿物化学成分比较(%)
Table 2. Comparison of chemical composition of clay minerals from various regions
表 3 不同地区的粘土矿物组成和结晶度指数
Table 3. Mineral assemblages and crystallinity index of clays from various regions
-
[1] An, Z. S., Kutzbach, J. E., Prell, W. L., et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411: 62-66. doi: 10.1038/35075035 [2] An, Z. S., Wang, S. M., Wu, X. H., et al., 1998. Eolian evidence from the Chinese Loess Plateau: The onset of the Late Cenozoic great glaciation in the northern hemisphere and Qinghai-Xizang plateau uplift forcing. Science in China (Series D), 28 (6): 481-490 (in Chinese). [3] Biscaye, P. E., 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Am. Bull., 76: 803-831. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2 [4] Boulay, S., Colin, C., Trentesaux, A., et al., 2005. Sediment sources and East Asian monsoon intensity over the last 450 ka. Mineralogical and geochemical investigations on South China Sea sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol., 228 (3-4): 260-277. doi: 10.1016/j.palaeo.2005.06.005 [5] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of SE Asia. J. Geophys. Res. , 98 (B4): 6299-6328. doi: 10.1029/92JB02280 [6] Chen, M. H., Wang, R. J., Yang, L. H., et al., 2003. Development of East Asian summer monsoon environments in the Late Miocene: Radiolarian evidence from Site 1143 of ODP Leg 184. Mar. Geol. , 201: 169-177. doi: 10.1016/S0025-3227(03)00215-9 [7] Cheng, X. R., Zhao, Q. H., Wang, J., et al., 2004. Data report: Stableisotopes from sites 1147 and 1148. In: Prell, W. L., ed., Proc. ODPSci. Results, 184: 1-12. [8] Clift, P., Lee, J. I., Clark, M. K., et al., 2002. Erosional response of South China to arc rifting and monsoonal strengthening: A record from the South China Sea. Mar. Geol. , 184 (3-4): 207-226. doi: 10.1016/S0025-3227(01)00301-2 [9] Copeland, P., 1997. The when and where of the growth ofthe Himalaya and the Tibetan plateau. In: Ruddiman, W. F., ed., Tectonic uplift and climate change. Plenum Press, New York, 19-40. [10] Ding, Z. L., Xiong, S. F., Sun, J. M., et al., 1999. Pedostratigraphy and paleomagnetism of a ~7.0 Ma eolian loess-red clay sequences at Lingtai, Loess Plateau, north-central China and implications for paleomonsoon evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. , 152: 49-66. doi: 10.1016/S0031-0182(99)00034-6 [11] Ehrmann, W., 1998. Implications of Late Eocene to Early Miocene clay mineral assemblages in Mc Murdo Sound (RosSea, Antarctica) on paleoclimate and ice dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. , 139: 213-231. doi: 10.1016/S0031-0182(97)00138-7 [12] Fang, X. M., Xi, X. X., Li, J. J., et al., 1997. Discovery of the Late Miocene aridity events in West China and its significance. Chinese Sci. Bull. , 42 (23): 2521-2524 (in Chinese). doi: 10.1360/csb1997-42-23-2521 [13] Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., et al., 2002. Onset of Asian desertification by 22 Myragoinferred from loess deposits in China. Nature, 416: 159-163. doi: 10.1038/416159a [14] Guong, Z., Jin, Q., Qiu, Z., et al., 1989. Geology, tectonicand evolution of the Pearl River Mouth basin. In: ZhuX., ed., Chinese sedimentary basins. Elsevier SciPubl., Amsterdam, 181-196. [15] Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sci. , 20: 353-431. doi: 10.1016/S1367-9120(01)00069-4 [16] Harris, N., 2006. The elevation history of the Tibetan plateau and its implications for the Asian monsoon. Palaeo-geogr. Palaeoclimatol. Palaeoecol., 241 (1): 4-15. doi: 10.1016/j.palaeo.2006.07.009 [17] He, L. B., Liu, Q. Y., 1997. Chemical character of clay minerals in the Yellow River and Yangtze River. Chinese Sci. Bull. , 42 (7): 730-734 (in Chinese). [18] Jeong, G. Y., Yoon, H. I., Lee, S. Y., 2004. Chemistry and microstructures of clay particles in smectite-rich shelf sediments, South Shetland Islands, Antarctica. Mar. Geol. , 209: 19-30. doi: 10.1016/j.margeo.2004.05.027 [19] Jia, G. D., Peng, P. A., Zhao, Q. H., et al., 2003. Changes in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China Sea. Geol. , 31: 1093-1096. doi: 10.1130/G19992.1 [20] Kroon, D., Steens, T., Troelstra, S. R., 1991. Onset of monsoonal related upwellingin the western Arabian Sea as revealed by planktonic foraminifers. In: Prell, W. L., Niitsuma, N., eds., Proc. ODP Sci. Results, 117: 257-263. [21] Lee, T. Y., Lawver, L. A., 1994. Cenozoic plate reconstruction of the South China Sea region. Tectonophysics, 235: 149-180. doi: 10.1016/0040-1951(94)90022-1 [22] Li, A. C., 1997. Astudy on fluxes and composition characteristics of mineral aerosols from the low atmosphere of the eastern China Seas: [Dissertation]. PhD Thesis, Chinese Academy of Sciences, China. 53 (in Chinese with English abstract). [23] Li, X. H., Wei, G. J., Shao, L., et al., 2003. Geochemical and Nd isotopic variations in sediments of the South China Sea: A response to Cenozoic tectonism in SE Asia. Earth Planet. Sci. Lett. , 211 (3-4): 207-220. doi: 10.1016/S0012-821X(03)00229-2 [24] Liu, Z. F., Trentesaux, A., Clemens, S. C., et al., 2003. Clay mineral assemblages in the northern South China Sea: Implications for East Asian monsoon evolution over the past 2 million years. Mar. Geol. , 201 (1-3): 133-146. doi: 10.1016/S0025-3227(03)00213-5 [25] Lü, L. Q., Fang, X. M., Mason, J. A., et al., 2001. The evolution of coupling of Asian winter monsoon and high latitude climate of northern hemisphere—Grain evidence from 8.1 Ma loessred clay sequence onthe Chinese central Loess Plateau. Sciencein China (Series D), 44: 185-191 (in Chinese). [26] Lüdmann, T., Wong, H. K., Wang, P. X., 2001. Plio-Quater-nary sedimentation processes and neotectonics of the northern continental margin of the South China Sea. Mar. Geol. , 172: 331-358. doi: 10.1016/S0025-3227(00)00129-8 [27] Ma, Y. Z., Li, J. J., Fang, X. M., 1998. Vegetation and climate evolution from 30.6-5.0 Ma recorded in red beds at Linxia. Chinese Sci. Bull. , 43 (3): 301-304 (in Chinese). doi: 10.1360/csb1998-43-3-301 [28] Milliman, J. D., Kao, S. J., 2005. Hyperpycnal discharge of fluvial sediment to the ocean: Impact of super-typhoon Herb (1996) on Taiwanese Rivers. J. Geol. , 113 (5): 503-516. doi: 10.1086/431906 [29] Milliman, J. D., Meade, R. H., 1983. World wide delivery of river sediment to the oceans. J. Geol. , 91 (1): 1-21. doi: 10.1086/628741 [30] Moore, D. M., Reynolds, R. C. J., 1997. X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford. [31] Petschick, R., Kuhn, G., Gingele, F., 1996. Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport, and relation to oceanography. Mar. Geol. , 130 (3-4): 203-229. doi: 10.1016/0025-3227(95)00148-4 [32] Prell, W. L., Murray, D. W., Clemens, S. C., et al., 1992. Evolution and variability of the Indian Ocean summer monsoon: Evidence from the western Arabian Sea drilling program. In: Duncan, R. A., Rea, D. K., Kidd, R. B., et al., eds., Synthesis of results from scientific drilling in the Indian Ocean. Geophysical Monograph, 70: 447-469. [33] Quade, J., Cerling, T. E., Bowman, J. R., 1989. Development of the Asian monsoon revealed by marked ecologic shift during the latest Miocene of northern Pakistan. Nature, 342: 163-166. doi: 10.1038/342163a0 [34] Rea, D. K., Snoeckx, H., Joseph, L. H., 1998. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Ti-betan uplift, and cooling of the northern hemisphere. Paleoceanography, 13 (3): 215-224. doi: 10.1029/98PA00123 [35] Ruddiman, W. F., Kutzbach, J. E., 1989. Forcing of Late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West. J. Geophys. Res. , 94 (D15): 18409-18427. doi: 10.1029/JD094iD15p18409 [36] Shao, L., Li, X. H., Wei, G. J., et al., 2001. Provenance of a prominent sediment drift on the northern slope of the South China Sea. Science in China (Series D), 44: 919-925 (in Chinese). doi: 10.1007/BF02907084 [37] Shi, X. F., Chen, L. R., Li, K. Y., et al., 1995. Study on minerageny of the clay sediment in the west of Philippine Sea. Marine Geology & Quaternary Geology, 15 (2): 61-72 (in Chinese with English abstract). [38] Sibuet, J. C., Hsu, S. K., 2004. How was Taiwan created? Tectonophysics, 379 (1-4): 159-181. doi: 10.1016/j.tecto.2003.10.022 [39] Sun, X. J., Wang, P. X., 2005. How old is the Asian monsoon system? —Palaeobotanical records from China. Palaeogeogr. Palaeoclimatol. Palaeoecol. , 222: 181-222. doi: 10.1016/j.palaeo.2005.03.005 [40] Taylor, B., Hayes, D. E., 1983. Origin and history of the South China Sea basin. In: Hayes, D. E., ed., The tectonic and geologic evolution of southeast Asian Seas and islands, 2. Geophysical Monograph, 27: 23-56. [41] Teng, L. S., 1990. Geotectonic evolution of Late Cenozoic arccontinent collision in Taiwan. Tectonophysics, 183 (1-4): 57-76. doi: 10.1016/0040-1951(90)90188-E [42] Tian, J., Wang, P. X., Cheng, X. R., 2004. Development of the East Asian monsoon and Northern Hemisphere glaciation: Oxygen isotope records from the South China Sea. Quaternary Sci. Rev. , 23: 2007-2016. doi: 10.1016/j.quascirev.2004.02.013 [43] Wan, S. M., Li, A. C., Clift, P. D., et al., 2006. Development of the East Asian summer monsoon: Evidence from the sediment recordin the South China Sea since 8.5 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. , 241 (1): 139-159. doi: 10.1016/j.palaeo.2006.06.013 [44] Wan, S. M., Li, A. C., Clift, P. D., et al., 2007. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. , 254 (3-4): 561-582. doi: 10.1016/j.palaeo.2007.07.009 [45] ang, P. X., Clemens, S., Beaufort, L., et al., 2005. Evolution and variability of the Asian monsoon system: State of the art and outstanding issues. Quaternary Sci. Rev. , 24 (5-6): 595-629. doi: 10.1016/j.quascirev.2004.10.002 [46] Wang, P. X., Prell, W. L., Blum, P., et al., 2000. Proceeding of the ocean drilling program, scientific restults, 184 [CD-ROM]. Ocean Drilling Program, Texas A & M University, College Station, TX 77845-9547, USA, 1-77. [47] Webster, P. J., Magana, V. O., Pal mer, T. N., et al., 1998. The monsoons: Processes, predictability, and the prospects for prediction, in the TOGA decade. J. Geophys. Res., 103: 14451-14510. doi: 10.1029/97JC02719 [48] Wehausen, R., Brumsack, H. J., 2002. Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments. Earth Planet. Sci. Lett. , 201 (3-4): 621-636. doi: 10.1016/S0012-821X(02)00746-X [49] Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma topresent. Science, 292: 686-693. doi: 10.1126/science.1059412 [50] Zhang, P. Z., Molnar, P., Downs, W. R., 2001. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature, 410 (6831): 891-897. doi: 10.1038/35073504 [51] Zheng, H. B., Powell, C. M., Rea, D. K., et al., 2004. Late Miocene and mid-Pliocene enhancement of the East Asian monsoon as viewed from the land and sea. Globaland Planetary Change, 41: 147-155. doi: 10.1016/j.gloplacha.2004.01.003 [52] 安芷生, 王苏民, 吴锡浩, 等, 1998. 中国黄土高原的风积证据: 晚新生代北半球大冰期开始及青藏高原的隆升驱动. 中国科学(D辑), 28 (6): 481-490. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199806000.htm [53] 方小敏, 奚晓霞, 李吉均, 等, 1997. 中国西部晚中新世气候变干事件的发现及其意义. 科学通报, 42 (23): 2521-2524. doi: 10.3321/j.issn:0023-074X.1997.23.013 [54] 何良彪, 刘秦玉, 1997. 黄河与长江沉积物中粘土矿物的化学特征. 科学通报, 42 (7): 730-734. doi: 10.3321/j.issn:0023-074X.1997.07.020 [55] 李安春, 1997. 中国东部海域上空矿物气溶胶通量和组成研究. 中国科学院博士论文. [56] 吕连清, 方小敏, Mason, J. A., 等, 2001.8.1 Ma以来朝那黄土-红黏土剖面粒度揭示的冬季风与北半球高纬气候的耦合演化. 中国科学(D辑), 31 (增刊): 149-154. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXG200703008.htm [57] 马玉贞, 李吉均, 方小敏, 1998. 临夏地区30.6-5.0 Ma红层孢粉植物群与气候演化记录. 科学通报, 43 (3): 301-304. doi: 10.3321/j.issn:0023-074X.1998.03.019 [58] 邵磊, 李献华, 韦刚健, 等, 2001. 南海陆坡高速堆积体的物质来源. 中国科学(D辑), 31 (10): 828-833. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200110005.htm [59] 石学法, 陈丽蓉, 李坤业, 等, 1995. 西菲律宾海西部海域粘土沉积物的成因矿物学研究. 海洋地质与第四纪地质, 15 (2): 61-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ502.007.htm