Planktonic Foraminifer and Oxygen Isotopic Evidence of a Late Miocene Western Pacific Warm Pool
-
摘要: 浮游有孔虫深水种Globoquadrina dehiscens于10Ma左右从西太平洋和南海绝灭, 要比其他地区早大约3Ma.伴随这一事件还见以表层暖水种增多而深水种大幅度减少为主要特征的生物群变化.古生物和氧同位素结果指示当时表层水变暖和温跃层变深, 我们认为是与早期西太平洋暖池的发育有关.该种在西北和西南太平洋呈阶段性消失也说明暖水堆集比赤道区更强, 尽管印尼海道在晚中新世已大为变窄, 穿越印尼海道的径流可能尚保持较高的通量水平而使赤道区暖水堆集不特别明显.南海的浮游氧同位素值通常比开放西太平洋的低, 也说明中新世时期的上层海水环境与现代相似, 都是暖池边缘区比中心区变化大.暖池边缘区水体环境多变和温度梯度较高可能是受季风的影响, 结果造成深水种的降低和G.dehiscens提早从南海地区绝灭.Abstract: The disappearance at ~10 Ma of the deep dwelling planktonic foraminifer Globoquadrina dehiscens from the western Pacific including the South China Sea was about 3 Ma earlier than its final extinction elsewhere. Accompanying this event at ~10 Ma was a series of faunal turnover characterized by increase in mixed layer, warm-water species and decrease to a minimum in deepwater species. Paleobiological and isotopic evidences indicate sea surface warming and a deepened local thermocline that we interpret as related to the development of an early western Pacific warm pool. The stepwise decline of G. dehiscens and other deep dwelling species from the NW and SW Pacific suggests more intensive warm water pileup than equatorial localities where surface bypass flow through the narrowing Indonesia seaway appears to remain efficient during the Late Miocene. Planktonic 18O values from the South China Sea consistently lighter than the tropical western Pacific during the Miocene also suggest, similar to today, more variable hydrologic conditions along the periphery than in the core of the warm pool. Stronger hydrologic variability affected mainly by monsoons and increased thermal gradient along the western margin of the Late Miocene warm pool may have contributed to the decline of deep dwelling planktonic species including the early extinction of G. dehiscens from the South China Sea region.
-
图 2 浮游有孔虫深水种Globoquadrina dehiscens在所选DSDP/ODP站的分布(资料来源见表 1)
Fig. 2. Range of Globoquadrina dehiscens in selected DSDP/ODP sites
图 5 南海1146站与西太平洋289站浮游有孔虫δ18O变化
Fig. 5. Variations of planktonic foraminifer oxygen isotope values from ODP Site 1146 (a, this study) and DSDP Site 289 (b, Gasperi and Kennett, 1993a)
图 7 据分析得出的晚中新世10~8 Ma太平洋环流格局和早期暖池的阶段性发育概况
Fig. 7. Interpreted circulation pattern in the low latitude Pacific from ~10 to 8 Ma (modified from Kennett et al., 1985) and stepwise formation of an early warm pool from (a) to (b)
表 1 Globoquadrina dehiscens在各站位绝灭的年龄(据Berggren et al., 1995地层年代表推算)
Table 1. Site localities and estimated age for the LO of Globoquadrina dehiscens on the timescale
-
[1] Ali, J. R., Roberts, S. J., Hall, R., 1994. The closure of theIndo-Pacific Ocean gateway: A new plate tectonic per-spective. In: Hehuwat, F., ed., Proceedings of the inter-national workshop on Neogene evolution of PacificOcean gateways. Bandar Lampung, Indonesia, 10-20. [2] Berger, W. H., Leckie, R. M., Janecek, T. R., et al., 1993. Neogene carbonate sedimentation on Ontong Javaplateau: Highlights and open questions. Proc. ODP Sci. Results, 130: 711-744. [3] Berggren, W. A., Kent, D. V., Swisher, C. C., et al., 1995. Arevised Cenozoic geochronology and chronostratigra-phy. In: Berggren, W. A., Kent, D. V., Aubry, M. P., et al., eds., Geochronology time scales and global strati-graphic correlation. SEMP Special Publication, 54: 129-212. [4] Chaisson, W. P., Leckie, R. M., 1993. High-resolution Neo-gene planktonic foraminifer biostratigraphy of Site806, Ontong Java plateau (Western Equatorial Pacific). Proc. ODP Sci. Results, 130: 137-178. [5] Chaisson, W. P., Pearson, P. N., 1997. Planktonic foraminifera biostratigraphy at Site 925: Middle Mio-cene-Pleistocene. Proc. ODP Sci. Results, 154: 3-21. [6] Chaisson, W. P., Ravelo, A. C., 2000. Pliocene developmentof the east-west hydrographic gradient in the equatorial Pacific. Paleoceanography, 15: 497-505. doi: 10.1029/1999PA000442 [7] De Garidel-Thoron, T., Rosenthal, Y., Bassinot, F., et al., 2005. Stable sea surface temperatures in the western Pacific warmpool over the past 1.75 million years. Nature, 433: 294-298. doi: 10.1038/nature03189 [8] Edwards, A. R., 1975. South-west Pacific Cenozoic paleo-geography and integrated Neogene paleocirculationmodel. Init. Rept. DSDP, 30: 667-684. [9] Elburg, M. A., Foden, J., 1999. Geochemical response tovarying tectonic settings: An example from southernSulawesi (Indonesia). Geoch. Cosmoch. Acta, 63: 1155-1172. doi: 10.1016/S0016-7037(98)00298-1 [10] Flower, B. P., Kennett, J. P., 1994. The Middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr. Palaeocli matol. Palaeoecol., 108: 537-555. doi: 10.1016/0031-0182(94)90251-8 [11] Gasperi, J. T., Kennett, J. P., 1992. Isotopic evidence fordepth stratification and paleoecology of Miocene plank-tonic foraminifera: Western Equatorial Pacific DSDP Site 289. In: Tsuchi, R., Ingle, J. C., Jr., eds., Pacific Neogene environment, evolution and events. Univ. To-kyo Press, Tokyo, 235-254. [12] Gasperi, J. T., Kennett, J. P., 1993a. Miocene planktonicforaminifers at DSDP Site 289: Depth stratificationusing isotopic differences. Proc. ODP Sci. Results, 130: 323-332. [13] Gasperi, J. T., Kennett, J. P., 1993b. Vertical thermocline structure evolution of Miocene surface waters: Western Pacific DSDP Site 289. Mar. Micropaleontol., 22: 235-254. doi: 10.1016/0377-8398(93)90046-Z [14] Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sci., 20: 353-431. doi: 10.1016/S1367-9120(01)00069-4 [15] Haq, B. U., Hardenbol, J., Vail, P. R., 1987. Chronology offluctuating sea levels since the Triassic. Science, 235: 1156-1167. doi: 10.1126/science.235.4793.1156 [16] Hardenbol, J., Thierry, J., Farley, M. B., et al., 1998. Cenozoic sequence chronostratigraphy. In: De Graciansky, P. C., Hardenbol, J., Jacqui, T., et al., eds., Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. SEPM Spec. Publ., 60: 3-13, Charts 1-8. [17] Hodell, D. A., Kennett, J. P., 1986. Late Miocene-Early Pliocene stratigraphy and paleoceanography of the SouthAtlantic and Southwest Pacific oceans: Asynthesis. Paleoceanography, 1: 285-311. doi: 10.1029/PA001i003p00285 [18] Holbourn, A., Kuhnt, W., Schulz, M., 2004. Orbital pacedclimate variability during the Middle Miocene: High res-olution benthic foraminiferal stable-isotopic recordsfromthe tropical western Pacific. In: Clift, P., Wang, P. X., Kuhnt, W., et al., eds., Continent-ocean interac-tions within East Asian marginal seas. Geophysical Monograph, 149: 321-337. [19] Jenkins, D. G., Srinivasan, 1986. Cenozoic planktonic fora-minifers from the equator to the sub-antarctic of thesouthwest Pacific. Init. Repts. DSDP, 90: 795-834. [20] Jian, Z. M., Yu, Y., Li, B. H., et al., 2006. Phased evolutionof the south-north hydrographic gradient in the South China Sea since the Middle Miocene. Palaeogeogr. Palaeocli matol. Palaeoecol., 230: 251-263. doi: 10.1016/j.palaeo.2005.07.018 [21] Keller, G., 1980. Middle to Late Miocene planktonic forami-niferal datumlevels and paleoceanography of the Northand Southeastern Pacific Ocean. Mar. Micropaleontol., 5: 249-281. doi: 10.1016/0377-8398(80)90013-4 [22] Keller, G., 1981. Miocene biochronology and paleoceanogra-phy of the North Pacific. Mar. Micropaleontol., 6: 535-551. doi: 10.1016/0377-8398(81)90020-7 [23] Keller, G., 1985. Depth stratification of planktonic foramini-fers in the Miocene ocean. In: Kennett, J. P., ed., The Miocene ocean. GSA Memoir, 163: 177-196. [24] Kennett, J. P., 1973. Middle and Late Cenozoic planktonic foraminiferal biostratigraphy of the Southwest Pacific. Init. Repts. DSDP, 21: 575-639. [25] Kennett, J. P., 1977. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact onglobal paleoceanography. J. Geophysical Res., 82: 3843-3860. doi: 10.1029/JC082i027p03843 [26] Kennett, J. P., Srinivasan, M. S., 1974. Stratigraphic occur-rences of the Miocene planktonic foraminifer globoquad-rina dehiscens in Early Pliocene sediments of the Indian Ocean. Revista Espanola de Micropaleontologia, 7: 5-14. [27] Kennett, J. P, Keller, G., Srinivasan, M. S., 1985. Mioceneplanktonic foraminiferal biogeography and paleoceano-graphic development of the Indo-Pacific region. In: Ken-nett, J. P., ed., The Miocene ocean. GSA Memoir, 163: 197-236. [28] Kennett, J. P., Srinivasan, M. S., 1983. Neogene planktonic foraminifera: A phylogenetic atlas. Hutchinson RossPublication Co., New York. [29] Koutavas, A., Lynch-Stieglitz, J., Marchitto Jr. T., et al., 2002. El Niño-like patterninice age tropical Pacific seasurface temperature. Science, 297: 226-230. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX202201036.htm [30] Kuhnt, W., Holbourn, A., Hall, R., et al., 2004. Neogenehistory of the Indonesian throughflow. In: Clift, P., Wang, P. X., Kuhnt, W., et al., eds., Continent-ocean interactions within East Asian marginal seas. Geophysical Monograph Series, 149: 299-318. [31] Lea, D. W., Pak, D. K., Spero, H. J., 2000. Climate impact of Late Quaternary equatorial Pacific sea surface tempera-ture variations. Science, 289: 1719-1724. doi: 10.1126/science.289.5485.1719 [32] Li, B. H., Wang, J., Huang, B., et al., 2004. South China Seasurface water evolution over the last 12 Ma: A south-north comparison from ODP Sites 1143 and 1146. Paleoceanography, 19: PA1009PA1009, doi: 10.1029/2003PA000906. [33] Li, Q. Y., McGowran, B., Brunner, C. A., 2003. Neogene plank-tonic foraminiferal biostratigraphy of Sites 1126, 1128, 1130, 1132 and 1134, ODP Leg 182, Great Australian Bight. Proc. ODP Sci. Results, 182: 1-65 (online). [34] Linthout, K., Hel mers, H., Sopaheluwakan, J., 1997. Late Miocene obduction and microplate migration around thesouthern Banda Sea and the closure of the Indonesian Seaway. Tectonophysics, 281: 17-3. doi: 10.1016/S0040-1951(97)00156-X [35] Mann, P., Taira, A., 2004. Global tectonic significance of theSolomon Islands and Ontong Java plateau convergentzone. Tectonophysics, 389: 137-190. doi: 10.1016/j.tecto.2003.10.024 [36] Miller, K. G., Fairbanks, R. G., Mountain, G. S., 1987. Tertiaryoxygen isotope synthesis, sea level history, and continentalmargin erosion. Paleoceanography, 2: 1-19. doi: 10.1029/PA002i001p00001 [37] Nathan, S. A., Leckie, R. M., 2003. Miocene planktonic foraminiferal biostratigraphy of Sites 1143 and 1146, ODP Leg 184, South China Sea. Proc. ODP Sci. Results, 184: 1-43 (online). [38] Nishi mura, S., 1992. Tectonic approach to changes in surfacewater circulation between the tropical Pacific and Indianoceans. In: Tsuchi, R., Ingle, Jr., J. C., eds., Pacific Neogene: Environment, evolution and events. Univ. To-kyo Press, Kokyo, 1570-1167. [39] Pagani, M., Arthur, M. A., Freeman, K. H., 1999. Mioceneevolution of at mospheric carbon dioxide. Paleoceanography, 14: 273-292. doi: 10.1029/1999PA900006 [40] Patrick, A., Thunell, R. C., 1997. Tropical Pacific sea surfacetemperatures and upper water column thermocline structure during the last glacial maximum. Paleoceanography, 12: 649-657. doi: 10.1029/97PA01553 [41] Pearson, P. N., Pal mer, M. R., 2000. At mospheric carbon di-oxide concentrations over the past60million years. Nature, 406: 695-699. doi: 10.1038/35021000 [42] Peirce, J., Weissel, J., 1989. Proc. ODP Init. Reports, 121. College Station, TX (Ocean Drilling Program). [43] Petterson, M. G., Babbs, T., Neal, C. R., et al., 1999. Geological-tectonic framework of Solomon Islands, SW Pacific: Crustal accretion and growth within an intra-oce-anic setting. Tectonophysics, 301: 35-60. doi: 10.1016/S0040-1951(98)00214-5 [44] Ruddiman, W. F., 1997. Tectonic uplift and climate change. Plenum Press, New York. [45] Savin, S. M., Abel, L., Barrera, E., et al., 1985. The evolution of Miocene surface and near-surface marine temper-atures: Oxygen isotopic evidence. In: Kennett, J. P., ed., The Miocene ocean. GSA Memoir, 163: 49-82. [46] Shackleton, N. J., 1985. The carbon cycle and at mospheric CO2: Natural variations Archaean to present. AGU Geophysical Monograph, 32: 455-468. [47] Shevenell, A. E., Kennett, J. P., Lea, D. W., 2004. MiddleMiocene southern ocean cooling and Antarctic cryo-sphere expansion. Science, 305: 1766-1770. doi: 10.1126/science.1100061 [48] Spencer-Cervato, C., Thierstein, H. R., Lazarus, D. B., et al., 1994. Howsynchronous are Neogene marine plank-ton events? Paleoceanography, 9: 739-763. [49] Srinivasan, M. S., Sinha, D. K., 1991. Improved correlationof the Late Neogene planktonic foraminiferal datums in the equatorial to cool subtropical DSDP sites, southwest Pacific: Application of the graphic correlation method. In: Radhakrishna, B. P., ed., The world of Martin F. Glaessner. Geol. Soc. India Memoir, 20: 55-93. [50] Srinivasan, M. S., Sinha, D. K., 1998. Early Pliocene closing of the Indonesian Seaway: Evidence from north-east Indian Ocean and tropical Pacific deep sea cores. J. Asian Earth Sci., 16: 29-44. doi: 10.1016/S0743-9547(97)00041-X [51] Tapponnier, P., Xu, Z., Roger, F., et al., 2001. Oblique step-wise rise and growth of the Tibet plateau. Science, 294: 1671-1677. doi: 10.1126/science.105978 [52] Tian, J., Wang, P. X., Cheng, X. X., 2004. Development ofthe East Asian monsoon and Northern Hemisphereglaciation: Oxygenisotope records fromthe South China Sea. Quat. Sci. Rev., 23: 2007-2016. doi: 10.1016/j.quascirev.2004.02.013 [53] Tsuchi, R., 1994. Neogene evolution of Pacific Ocean gateways with reference to the event biostratigraphy of south-westJapan. In: Hehuwat, F., ed., Proceedings of the Interna-tional Workshop on Neogene Evolution of Pacific OceanGateways. Bandar Lampung, Indonesia, 2-9. [54] Vincent, E., Berger, W. H, 1985. Carbon dioxide and polar cool-ing in the Miocene: The Monterey hypothesis. In: Sundq-uist, E. T., Broecker, W. S., eds., The carbon cycle and at-mospheric CO2: Natural variations archean to present. AGUGeophysical Monograph, 32: 455-468. [55] Vincent, E., Toumarkine, M., 1995. Data report: Mioceneplanktonic foraminifers fromthe eastern equatorial Pacific. Proc. ODP Sci. Results, 138: 895-907. [56] Visser, K., Thunell, R., Stott, L., 2003. Magnitude and timing of temperature changein the Indo-Pacific warmpoolduring deglaciation. Nature, 421: 152-155. doi: 10.1038/nature01297 [57] Williams, D. F., Bé, A. W. H., Fairbanks, R. G., 1979. Sea-sonal oxygenisotopic variations inliving planktonic for-amnifera off Bermuda. Science, 206: 447-449. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202103047.htm [58] Wright, J. D., Thunell, R. C., 1988. Neogene planktonic foraminiferal biogeography and paleoceanography of theIndian Ocean. Micropaleontology, 34: 193-216. doi: 10.2307/1485752 [59] Yan, X., Ho, C., Zheng, Q., et al., 1992. Temperature andsize variabilities of the west Pacific warmpool. Science, 258: 1643-1645. doi: 10.1126/science.258.5088.1643 [60] Zachariasse, W. J., 1992. Neogene planktonic foraminifersfrom Sites761and762off northwest Australia. Proc. ODP Sci. Results, 122: 665-675. [61] Zachos, J. C., Pagani, M., Sloan, L., et al., 2001. Trends, rhythms, and aberrations in global climate65Ma topresent. Science, 292: 686-693. doi: 10.1126/science.1059412 [62] Zhou, Z. Y., Jin, X. C., Wang, L. L., et al., 2004. Two clo-sures of the Indonesian seaway and its relationship tothe formation and evolution of the western Pacific warmpool. Marine Geology & Quaternary Geology, 24: 8-14 (in Chinese with English abstract). [63] 周祖翼, 金性春, 王嘹亮, 等, 2004. 印尼海道的两度关闭与西太平洋暖池的形成和兴衰. 海洋地质与第四纪地质, 24: 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200401002.htm