Logging Data High-Resolution Sequence Stratigraphy
-
摘要: 在准层序中进行层组一级地层单元的识别和对比是高分辨率层序地层学研究的主要难点.提出了一种综合应用井资料进行层组界面识别和对比的新方法.通过测井曲线形态特征、岩心观察、铸体薄片、X衍射、扫描电镜分析、FMI测井资料, 对工区内钙质夹层成因、泥岩电阻率差异、储层电阻率和海拔深度关系进行了研究.结果表明: 钙质夹层单层厚度在0.5~2m之间, 靠近风化壳和断层位置单层厚度大, 分布在水下分支河道底部和河口坝顶部; 低阻泥岩(4~5Ω·m)和高阻泥岩(> 10Ω·m) 分别来源于不同的沉积物源或者形成于不同的沉积相带; 储层电阻率随着海拔深度的增加而增加.因此, 钙质夹层可以作为层组界面识别和对比的标志, 利用泥岩电阻率差异可以确定层组的叠置关系, 判断储层连通性.据此, 建立了准噶尔盆地石南地区西山窑组含油层段等时地层格架, 确定了格架内储层的连通性及油水界面, 并且通过MDT测井资料进行了验证.在此等时地层格架内, 层组的发育顺序、叠置关系、空间展布形态、以及彼此之间的连通性都被定性、定量的表征出来.Abstract: The recognition and contrast of bed sets in parasequence is difficult in terrestrial basin high-resolution sequence stratigraphy. This study puts forward new methods for bed set boundary identification and contrast on the basis of manifold logging data. This paper considers the formation causes of calcareous interbeds, shale resistivity differences and the relation of reservoir resistivity to altitude, on the basis of log curve morphological characteristics, core observation, founding slice, X-diffraction and scanning electron microscopy. The results show that the thickness of calcareous interbeds is between 0.5 m and 2 m and its thickness is increased on weathering crusts and faults. Calcareous interbeds occur at the bottom of a distributary channel and the top of a distributary mouth bar. Lower resistivity shale (4-5 Ω·m) and higher resistivity shale (>10 Ω·m) reflect differences in sediment fountain or sediment microfacies. Reservoir resistivity increases with altitude. So calcareous interbeds may become a symbol of recognition and isochronous contrast bed sets, and shale resistivity differences may confirm the stack relation and connectivity of bed sets. On the basis, the author founds the high-resolution chronostratigraphic framework of Xi-1 number in Shinan area in Junggar basin, and confirmed the connectivity of bed sets and oil-water contact. In this chronostratigraphic framework, the growth order, stack mode and space shape of bed sets are a qualitative and quantitative token.
-
图 4 蒙脱石胶体电阻率随孔隙度、矿化度的变化关系(据Patchett, 1975)
Fig. 4. Relation of ascanite colloform resistivity to porosity and salinity
-
[1] Aitken, J. F., Howell, J. A., 1996. High resolution sequence stratigraphy: Innovations, applications and future prospects. In: Howell, J. A., Aitken, J. F., eds., High resolution sequence stratigraphy: Innovations and application. Geological Society Special Publication, London, 1-9. [2] Bai, W. H, Lü, X. M., Li, X. J., et al., 2002. The mode of palaeokarstification and the fine reconstruction of the palaeogeomorphology in the karst basin: Taking Ordovician karst in eastern Ordos basin for example. Geoscience, 16(3): 292-299(in Chinese with English abstract). [3] Barnes, D. A., Lundgren, Carl. E., Longman, M. W., 1992. Sedimentology and diagenesis of the St. Peter sandstone, central Michigen basin. AAPG Bulletin, 76(10): 1570-1582. https://pubs.geoscienceworld.org/aapgbull/article-abstract/76/10/1507/38713/Sedimentology-and-Diagenesis-of-the-St-Peter [4] Huang, S. J., Wu, W. H., Liu, J., et al., 2003. Generation of secondary porosity by meteoric water during time of subaerial exposure: An example from Yanchang Formation sandstone of Triassic of Ordos basin. Earth Science-Journal of China University of Geosciences, 28 (4): 419-424(in Chinese with English abstract). [5] Lin, C. Y., Hou, L. H., Dong, C. M., et al., 1996. Study on calcareous interbeds in turbidite reservoir of Sha-3 member of the Liaohe western depression. Acta Sedimentologica Sinica, 14(3): 72-81(in Chinese with English abstract). [6] Liu, B. J., Zhang, J. Q., 1992. Diagenesis in sedimentation. Science Press, Beijing(in Chinese). [7] Patchett, J. G., 1975. An investigation of shale conductivity. SP WLA Annual Logging Symposium, New Orleans, Jun. 4-7. [8] Posamentier, H. W., Vail, P. R., 1988. Eustatic controls on clastic depositionⅡ-Sequence and systems tract models. In: Wilgus, C.K., ed., Sea-level changes: An integrated approach. SEPM Special Publication, 42: 125-154. [9] Vail, P. R., 1987. Seismic stratigraphy interpretation using sequence stratigraphy. Part 1: Seismic stratigraphy interpretation procedure. In: Bally, A.W., ed., Atlas of seismic stratigraphy. AAPG Studies in Geology, 27: 1-20. [10] Wagoner, Van. J. C., Mitchum, R. M., Campion, K. M., et al., 1990. Siliciclastic sequence stratigraphy in well logs, cores and outcrops: Concepts for high-resolution correlation of time and facies. AAPG Methods in Exploration, Series, 7: 55. https://pubs.geoscienceworld.org/aapg/books/book/1251/Siliciclastic-Sequence-Stratigraphy-in-Well-Logs [11] Van Wagoner, J. C., Posamentier, H. W., Mitchun, R.M., et al., 1988. An overview of the fundamentals of sequence stratigraphy and key definitions. In: Wilgus, C.K., ed., Sea level changes: An integrated approach. SEPM Special Publication, 42: 1-45. [12] Yang, W., Wei, G. Q., Li, Y. P., et al., 2003. Characteristics and control factor of Donghe sandstone reservoir in Tazhong 40 oilfield. Xinjiang Geology, 21(4): 440-446(in Chinese with English abstract). [13] Zheng, J. M., Ying, F. X., 1997. Reservoir characteristics and diagenetic model of sandstone intercalated in coal-bearing strata(acid water medium). Acta Petrolei Sinica, 18(4): 19-25(in Chinese with English abstract). [14] Zheng, R. C., Peng, J., 2003. Analysis and isochronostratigraphic correlation of high-resolution sequence stratigraphy for Chang-6 oil reservoir set in Zhidan delta, northern Ordos basin. Acta Sedimentologica Sinica, 20 (1): 92-101(in Chinese with English abstract). [15] Zhu, D. Y., Hu, W. X., Cao, X. W., et al., 2003. Classification and distribution of insulating layers in Linnan oilfield. Earth Science-Journal of China University of Geosciences, 29(2): 211-223(in Chinese with English abstract). [16] 拜文华, 吕锡敏, 李小军, 等, 2002. 古岩溶盆地岩溶作用模式及古地貌精细刻画——以鄂尔多斯盆地东部奥陶系风化壳为例. 现代地质, 16(3): 292-299. doi: 10.3969/j.issn.1000-8527.2002.03.013 [17] 黄思静, 武文慧, 刘洁, 等, 2003. 大气水在碎屑岩次生孔隙形成中的作用——以鄂尔多斯盆地三叠系延长组为例. 地球科学——中国地质大学学报, 28(4): 419-424. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304010.htm [18] 林承焰, 侯连华, 董春梅, 等, 1996. 辽河西部凹陷沙三段浊积岩储层中钙质夹层研究. 沉积学报, 14(3): 72-81. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB603.009.htm [19] 刘宝珺, 张锦泉, 1992. 沉积成岩作用. 北京: 科学出版社. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201305017.htm [20] 杨威, 魏国齐, 李宇平, 等, 2003. 塔中40油田东河砂岩储层特征及其控制因素. 新疆地质, 21(4): 440-446. doi: 10.3969/j.issn.1000-8845.2003.04.012 [21] 郑浚茂, 应凤祥, 1997. 煤系地层(酸性水介质)的砂岩储层特征及成岩模式. 石油学报, 18(4): 19-25. doi: 10.3321/j.issn:0253-2697.1997.04.004 [22] 郑荣才, 彭军, 2003. 陕北志丹三角洲长6油层组高分辨率层序分析与等时对比. 沉积学报, 20(1): 92-101. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200201015.htm [23] 朱东亚, 胡文, 曹学伟, 等, 2003. 临南油田隔层类型划分及其分布规律研究. 地球科学——中国地质大学学报, 29(2): 211-223. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200402014.htm