• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏冈底斯带叶巴组火山岩地球化学及成因

    耿全如 潘桂棠 金振民 王立全 朱弟成 廖忠礼

    耿全如, 潘桂棠, 金振民, 王立全, 朱弟成, 廖忠礼, 2005. 西藏冈底斯带叶巴组火山岩地球化学及成因. 地球科学, 30(6): 747-760.
    引用本文: 耿全如, 潘桂棠, 金振民, 王立全, 朱弟成, 廖忠礼, 2005. 西藏冈底斯带叶巴组火山岩地球化学及成因. 地球科学, 30(6): 747-760.
    GENG Quan-ru, PAN Gui-tang, JIN Zhen-min, WANG Li-quan, ZHU Di-cheng, LIAO Zhong-li, 2005. Geochemistry and Genesis of the Yeba Volcanic Rocks in the Gangdise Magmatic Arc, Tibet. Earth Science, 30(6): 747-760.
    Citation: GENG Quan-ru, PAN Gui-tang, JIN Zhen-min, WANG Li-quan, ZHU Di-cheng, LIAO Zhong-li, 2005. Geochemistry and Genesis of the Yeba Volcanic Rocks in the Gangdise Magmatic Arc, Tibet. Earth Science, 30(6): 747-760.

    西藏冈底斯带叶巴组火山岩地球化学及成因

    基金项目: 

    国土资源大调查项目 1212010310102

    详细信息
      作者简介:

      耿全如(1963-), 男, 教授级高工, 在读博士, 研究方向为岩石学和构造地质学.E-mail: cdgquanru@cgs.gov.cn

    • 中图分类号: P588.14;P597

    Geochemistry and Genesis of the Yeba Volcanic Rocks in the Gangdise Magmatic Arc, Tibet

    • 摘要: 叶巴组早侏罗世双峰式火山岩分布在拉萨、达孜至墨竹工卡之间, 岩性为浅变质玄武岩、玄武质熔结凝灰岩、英安岩、酸性凝灰岩及火山角砾岩等.火山岩SiO2含量集中在41%~50.4%和64%~69%两个区间, 为钙碱性系列的玄武岩和英安岩2类.玄武岩的显著特征是TiO2含量极低, 仅为0.66%~1.01%, 远低于大陆拉斑玄武岩.玄武岩的稀土总量∑REE=60.3~135μg/g, 英安岩的稀土总量∑REE=126.4~167.9μg/g.玄武岩和英安岩具有相似的稀土和微量元素特征, 两者均为轻稀土富集型, 分布特征相似, 轻、重稀土的分馏较明显, Eu异常均不显著; 均表现为LILE、LREE富集, HFS、HREE亏损的特点.玄武岩亏损Ti、Ta、Nb、Zr, Nb和Ta仅略负亏损, Nb*=0.54~1.17, 平均为0.84;英安岩亏损HFS中P、Ti, Ta、Nb略负异常, Nb*=0.74~1.06, 平均为0.86.玄武岩类的εNd(t) =0.96~10.03、(87Sr/86Sr)i=0.7043~0.7064, 英安岩的εNd(t) =-1.42~1.08、(87Sr/86Sr)i=0.7038~0.7049.从微量元素和同位素成分看, 玄武岩和英安岩浆起源于俯冲带之上的地幔楔不同程度的部分熔融, 源岩可能是亏损的尖晶石二辉橄榄岩.源区曾受到具地壳成分特征的流体不均匀交代.后期变质作用对岩石大离子亲石元素含量有影响.叶巴组双峰式火山岩形成于成熟岛弧后期的短暂拉张环境, 是印支期冈底斯岩浆弧演化的结果.

       

    • 图  1  研究区地质略图

      1.念青唐古拉群; 2.早古生代地层; 3~6.晚古生代地层, 主要为原旁多群、松多群、洛巴堆组等; 7.早—中三叠世, 主要指查曲浦组; 8.修康群郎杰学群浊积岩; 9.日当组砂泥岩; 10.晚侏罗—早白垩世, 主要指原多底沟群(J3); 11.竞柱山组碎屑岩; 12.老第三纪火山岩, 主要指林子宗群; 13.达孜县附近的叶巴组, 以火山岩为主; 14.1∶20万工布江达县—墨竹工卡县南部的叶巴组, 为酸性火山岩和沉积岩互层; 15.冈底斯花岗岩; 16.剖面及采样位置; 17.地质界线

      Fig.  1.  Sketch geological map of studied region

      图  2  玄武质玻屑熔结凝灰岩

      样品号BD09, 位于百定村西约2 km.深色部分为玄武质玻屑, 浅色部分为浆屑, 均呈拉长的塑性流动特征.不规则空隙由变质矿物碳酸盐、石英、绿帘石等充填, 单偏光

      Fig.  2.  Basaltic ignimbrite showing glass (dark) and magma (grey) clastes

      图  3  叶巴组火山岩分类图

      a.TAS硅碱图(LeMaitre, 1989, 转引自Rollison, 1992); Pc.苦橄玄武岩; U1.碱玄岩、碧玄岩; U2.响岩、碱玄岩; U3.碱玄响岩; U4.响岩; S1.粗面玄武岩; S2.玄武质粗面响岩; S3.粗面安山岩; T.粗面岩; R.流纹岩; B.玄武岩; 01.玄武安山岩; 02.安山岩; 03.英安岩; b图据Winchester and Floyd (1977); (1) 拉斑玄武岩; (2) 安山岩、玄武岩; (3) 安山岩; (4) 流纹英安岩、英安岩; (5) 流纹岩; (6) 碱性流纹岩; (7) 响岩; (8) 粗面岩; (9) 碧玄岩; (10) 碱玄岩

      Fig.  3.  Classification diagram for the Yeba volcanic rocks

      图  4  叶巴组火山岩稀土元素经球粒陨石标准化模式图、微量元素经MORB标准化蜘蛛图

      图  5  叶巴组玄武岩构造环境判别

      a.Zr-Y-Nb判别图(底图据Rollison, 1992); A1.板内碱性玄武岩; A2.板内碱性玄武岩+板内拉斑玄武岩; B.E-MORB; C.板内拉斑玄武岩+火山弧玄武岩; D.火山弧玄武岩+N-MORB; b.Th/Hf-Ta/Hf判别图(底图据汪云亮等, 2001); Ⅰ.板块发散边缘N-MORB区; Ⅱ.板块汇聚边缘(Ⅱ1.大洋岛弧玄武岩区; Ⅱ2.陆缘岛弧及陆缘火山弧玄武岩区); Ⅲ.大洋板内洋岛、海山玄武岩区及T-MORB、E-MORB区; Ⅳ.大陆板内(Ⅳ1.陆内裂谷及陆缘裂谷拉斑玄武岩区; Ⅳ2.陆内裂谷碱性玄武岩区; Ⅳ3.大陆拉张带或初始裂谷玄武岩区); Ⅴ.地幔柱玄武岩区

      Fig.  5.  Tectonomagmatic discrimination diagrams for basalts in the Yeba volcanic rocks

      图  6  叶巴组火山岩lnTh-lnHf图

      Fig.  6.  lnTh versus lnHf plot of the Yeba volcanic rocks

      图  7  部分熔融及其程度判别

      a, b, c图中圆点为玄武岩, 方块为英安岩, 两者均为斜线排列, 说明是部分熔融形成; d图中圆点为玄武岩、十字为英安岩, 直线上标明的百分数为部分熔融程度

      Fig.  7.  Partial melting discrimination and its degree diagrams

      表  1  叶巴组火山岩常量元素(%) 和微量元素(10-6) 分析

      Table  1.   Major (%) and trace element (10-6) data for the Yeba volcanic rocks

      表  2  叶巴组火山岩Sr-Nd同位素组成

      Table  2.   Sr-Nd isotopic analyses of the Yeba volcanic rocks

    • [1] Allegre, C. J., Minster, J. F., 1978. Quantitative models of trace element in igneous petrology. Earth and Planetary Science Letters, 38: 1-25. doi: 10.1016/0012-821X(78)90123-1
      [2] Andrew, G., Conly, J. M., Brenan, H. B., et al., 2005. Arc to rift transitional volcanism in the Santa Rosalía region, Baja California Sur, Mexico. Journal of Volcanology and Geothermal Research, 142 (3-4): 303-341. doi: 10.1016/j.jvolgeores.2004.11.013
      [3] Bonin, B., 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources: A review. Lithos, 78 (1-2): 1-24. doi: 10.1016/j.lithos.2004.04.042
      [4] Busby, C., 2004. Continental growth at convergent margins facing large ocean basins: A case study from Mesozoic convergent-margin basins of Baja California, Mexico. Tectonophysics, 392 (1-4): 241-277. doi: 10.1016/j.tecto.2004.04.017
      [5] Chang, C. F., Zheng, X. L., 1973. Tectonic features of the Mount. Jolmo Lungma region in southern Tibet, China. Scientia Geologica Sinica, 1: 1-12 (in Chinese with English abstract).
      [6] Christian, P., Paquette, J. L., 1997. A mantle derived bimodal suite in the Hercynian belt: Nd isotope and trace element evidence for a subduction related rift origin of the Late Devonian Brevenne metavolcanics, Massif Central (France). Contributions to Mineralogy and Petrology, 129: 222-238. doi: 10.1007/s004100050334
      [7] Davies, G. R., Macdonald, R., 1987. Crustal influences in the petro-genesis of the Naivasha basalt-comendite complex: Combined trace element and Sr-Nd-Pb isotope constraints. Journal of Petrology, 28: 1009-1031. doi: 10.1093/petrology/28.6.1009
      [8] Deniel, C., 1998. Geochemical and isotopic (Sr, Nd, Pb) evidence for magmas (Indian Ocean). Chemical Geology, 144 (3-4): 281-303. doi: 10.1016/S0009-2541(97)00139-3
      [9] Doe, B. R., Leeman, W. P., Christiansen, R. L., et al., 1982. Lead and strontium isotopes and related trace elements as genetic tracers in the Upper Cenozoic rhyolite-basalt association of the Yellow Stone plateau volcanic field. Journal of Geophysical Research, 87: 4785-4806. doi: 10.1029/JB087iB06p04785
      [10] Gao, H. X., Song, Z. J., 1995. New progress in the study of Zedang ophiolitic mélange in Tibet. Regional Geology of China, 4: 316-322 (in Chinese with English abstract).
      [11] Geng, Q. R., Mao, Y. S., 1991. The petrographic and mineralogic characteristics and petrogenesis of spilite-keratophyre sequence from Qijiaojing Formation, eastern Tianshan, Xinjiang. Bulletin of Chengdu Institute of Geology and Mineral Resources, Chinese Academy of Geosciences, 15: 119-132 (in Chinese with English abstract).
      [12] Geng, Q. R., Pan, G. T., Zheng, L. L., et al., 2004. Petrological characteristics and original settings of the Yarlung Tsangpo ophiolitic mélange in Namche Barwa, SE Tibet. Chinese Journal of Geology (Scientia Geologica Sinica), 39 (3): 387-406 (in Chinese with English abstract).
      [13] Gou, J., 1994. A new knowledge on the attributes of Yeba Formation in Lhasa area. Tibet Geology, 11: 1-6 (in Chinese with English abstract).
      [14] Gu, L. X., Hu, S. X., Yu, C. S., et al., 2000. Carboniferous volcanites in the Bogda orogenic belt of eastern Tianshan: Their tectonic implications. Acta Petrologica Sinica, 16 (3): 305-316 (in Chinese with English abstract).
      [15] Guo, F., Fan, W. M., Wang, Y. J., et al., 2001. Petrogenesis of the Late Mesozoic bimodal volcanic rocks in the southern Da Hinggan Mts, China. Acta Petrologica Sinica, 17 (1): 161-168 (in Chinese with English abstract).
      [16] Honegger, K., Dietrich, V., Frank, W., et al., 1982. Magmatism and metamorphism in the Ladakh Himalayas (the Indus-Tsangpo suture zone). Earth and Planetary Science Letters, 60 (2): 253-292. doi: 10.1016/0012-821X(82)90007-3
      [17] Hsu, K. J., Pan, G. T., Sengör, A. M. C., et al., 1995. Tectonic evolution of the Tibet plateau: A working hypothesis based on the archipelagomodel of orogenesis. International Geology Review, 37: 473-508. doi: 10.1080/00206819509465414
      [18] Huang, J. Q., Chen, B. W., 1987. The evolution of Tethys in China and adjacent area. Geological Publishing House, Beijing, 1-86 (in Chinese).
      [19] Jin, C. W., Zhou, Y. S., 1978. Igneous rock belts in the Himalayas and the Dandes arc and their genetic modal. Scientia Geologica Sinica, (4): 297-312 (in Chinese).
      [20] Jörg, A., Pfänder, K. J., Kozakov, I., et al., 2002. Coupled evolution of back-arc and island arc-like mafic crust in the Late-Neoproterozoic Agardagh Tes-Chem ophiolite, Central Asia: Evidence from trace element and Sr-Nd-Pb isotope data. Contributions to Mineralogy and Petrology, 143 (2): 154-174. doi: 10.1007/s00410-001-0340-7
      [21] Kozo, U., Nguyen, H., Kazunori, M., 2004. Cenozoic lithospheric extension induced magmatism in Southwest Japan. Tectonophysics, 393 (1-4): 281-299. doi: 10.1016/j.tecto.2004.07.039
      [22] Li, C., Wang, T. W., Li, H. M., et al., 2003. Discovery of Indosinian megaporphyritic granodiarite in the Gangdise area: Evidence for the existence of paleo-Gangdise. Geological Bulletin of China, 22 (5): 364-366 (in Chinese with English abstract).
      [23] Li, C. N., 1992. Trace element petrology of igneous rocks. China University of Geosciences Press, Wuhan, 10-90 (in Chinese).
      [24] Li, T. D., 2002. New progress in the geoscience study of the Qinghai-Tibet plateau. Geological Bulletin of China, 21 (7): 371-376 (in Chinese with English abstract).
      [25] Li, W. P., Li, X. H., 2004. Petrogenesis and its implication for the Middle-Late Jurassic intermediate-acidic volcanic rocks in the middle section of Yanshan orogen. Acta Petrologica Sinica, 20 (3): 501-510 (in Chinese with English abstract).
      [26] Lu, Y. F., 2004. Geokit: A geochemical toolkit for Microsoft Excel. Geochimica, 33 (5): 459-464 (in Chinese with English abstract).
      [27] Machado, A., Lima, E. F., Chemale, F., et al., 2005. Geochemistry constraints of Mesozoic-Cenozoic calc-alkaline magmatism in the South Shetland arc, Antarctica. Journal of South American Earth Sciences, 18 (3-4): 407-425. doi: 10.1016/j.jsames.2004.11.011
      [28] Mao, G. Z., Hu, J. R., Xie, Y. W., 2002. Characteristics and genetic environment of the Yeba Formation in Lhasa region. Tibet Geology, 20: 12-18 (in Chinese with English abstract).
      [29] McKenzie, D., Bickle, M. J., 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29: 625-679. doi: 10.1093/petrology/29.3.625
      [30] Pan, G. T., Chen, Z. L., Li, X. Z., et al., 1997. Geological-tectonic evolution in the eastern Tethys. Geological Publishing House, Beijing, 1-218 (in Chinese with English abstract).
      [31] Pan, G. T., Wang, L. Q., Zhu, D. C., 2004. Thoughts on some important scientific problems in regional survey of the Qinghai-Tibet plateau. Geological Bulletin of China, 22 (7): 12-19 (in Chinese with English abstract).
      [32] Pearce, J. A., Mei, H. J., 1988. Volcanic rocks of the 1985 Tibet geotraverse: Lhasa to Golmud. In: The geologic evolution of Tibet. Report of the 1985 Royal Society-Academia Sinica geotraverse of the Qinghai-Xizang plateau. Cambridge University Press, 169-201.
      [33] Qian, Q., 2001. Adakite: Geochemical characteristics and genesis. Acta Petrologica et Mineralogica, 20 (3): 297-306 (in Chinese with English abstract).
      [34] Qian, Q., Wang, Y., 1999. Geochemical characteristics of bimodal volcanic suites from different tectonic settings. Geology Geochemistry, 27 (4): 29-32 (in Chinese with English abstract).
      [35] Qu, Y. G., Wang, Y. S., Zhang, S. Q., et al., 2003. An inspiration from the section of Late Triassic Duoburi Formation in the Xianza area—Stratigraphic constraints on the Indosinian movement in Gangdise. Geological Bulletin of China, 22 (7): 470-473 (in Chinese with English abstract).
      [36] Ren, J. S., Xiao, L. W., 2004. Lifting the mysterious veil of the tectonics of the Qinghai-Tibet plateau by 1∶250 000 geologic mapping. Geological Bulletin of China, 23 (1): 1-11 (in Chinese with English abstract).
      [37] Rollison, H. R., 1992. Using geochemical data: Evaluation, presentation, interpretation. Longman Group, UK Ltd., 1-275.
      [38] Shoichi, K., Asahiko, T., 1998. The Cleaverville Group in the West Pilbara coastal granitoid-greenstone terrain of Western Australia: An example of a Mid-Archaean immature oceanic island-arc succession. Precambrian Research, 88 (1-4): 109-142. doi: 10.1016/S0301-9268(97)00066-1
      [39] Stefanie, S. S., Ernst, H., 1999. Geochemistry and isotope systematics of calc-alkaline volcanic rocks from the Saar-Nahe basin (SW Germany) —Implications for Late-Variscan orogenic development. Contributions to Mineralogy and Petrology, 135 (4): 373-385. doi: 10.1007/s004100050518
      [40] Wang, N. W., Wang, S. E., Liu, G. F., et al., 1983. Marine-terrigenous facies of Jurassic and Cretaceous around Lhasa, Tibet. Acta Geologica Sinica, 57 (1): 83-95 (in Chinese with English abstract).
      [41] Wang, Q. H., Wang, B. S., Li, J. G., et al., 2002. Basic features and ore prospect evaluation of the Gangdise island arc, Tibet, and its copper polymetallic ore belt. Geological Bulletin of China, 21 (1): 35-40 (in Chinese with English abstract).
      [42] Wang, Y., Qian, Q., Liu, L., et al., 2000. Major geochemical characteristics of bimodal volcanic rocks in different geochemical environments. Acta Petrologica Sinica, 16 (2): 169-173 (in Chinese with English abstract).
      [43] Wang, Y. L., Zhang, C. J., Xiu, S. Z., 2001. Th/Hf-Ta/Hf identification of tectonic setting of basalts. Acta Petrologica Sinica, 17 (3): 413-421 (in Chinese with English abstract).
      [44] Wilson, M., 1989. Igneous petrogenesis. Unwin Hyman, London, 1-466.
      [45] Winchester, J. A., Floyd, P. A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20 (4): 325-343.
      [46] Xiao, X. C., Li, T. D., Li, G. C., et al., 1988. Himalayan lithospheric evolution. Geological Publishing House, Beijing, 1-209 (in Chinese with English abstract).
      [47] Yang, R. H., Li, C., Chi, X. G., et al., 2003. The primary study of geochemical characteristics and tectonic setting of ophiolite in Yongzhu Namuhu, Tibet. Geoscience, 17 (1): 14-19 (in Chinese with English abstract).
      [48] Yin, J. R., Gou, J., Pei, S. W., et al., 1988. The Middle Jurassic bivalve fauna in the volcanic rock series (Yeba Formation) of the Lhasa massif and its paleogeographics significance. Regional Geology of China, 17 (2): 132-136 (in Chinese with English abstract).
      [49] Yin, J. X., Xu, J. T., Liu, C. J., et al., 1988. The Tibetan plateau: Regional stratigraphic context and previous work. In: The geologic evolution of Tibet. Report of the 1985 Royal Society-Academia Sinica geotraverse of the Qinghai-Xizang plateau. Cambridge University Press, 5-52.
      [50] Zhang, Z. Q., Tang, S. H., Wang, J. H., et al., 2001. The Sm-Nd, Rb-Sr isotopic system of the dolomites in the Bayan Obo ore deposit, Inner Mongolia, China. Acta Petrologica Sinica, 17 (4): 637-942 (in Chinese with English abstract).
      [51] Zhang, Z. Q., Zhang, Q., 1995. Geochemistry of metamorphosed Late Proterozoic Kuanping ophiolite in the northern Qinling, China. Acta Petrologica Sinica, 11 (Suppl. ): 165-177 (in Chinese with English abstract).
      [52] Zheng, L. L., Geng, Q. R., Dong, H., et al., 2003. The discovery and significance of the relicts of ophiolitic mélange along the Parlung Zangbo in the Bomi region, eastern Xizang. Sedimentary Geology and Tethyan Geology, 23 (1): 28-30 (in Chinese with English abstract).
      [53] Zheng, Y. Y., Gao, S. B., Cheng, L. J., et al., 2004a. Finding and significances of Chongjiang porphyry copper (molybdenum, Aurum) deposit, Tibet. Earth Science—Journal of China University of Geosciences, 29 (3): 333-339 (in Chinese with English abstract).
      [54] Zheng, Y. Y., Xue, Y. X., Cheng, L. J., et al., 2004b. Finding, characteristics and significance of Qulong super-large porphyry copper (molybdenum) deposit, Tibet. Earth Science—Journal of China University of Geosciences, 29 (1): 103-108 (in Chinese with English abstract).
      [55] 常承法, 郑锡澜, 1973. 中国西藏南部珠穆朗玛峰地区构造特征. 地质科学, 1: 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX197301000.htm
      [56] 高洪学, 宋子季, 1995. 西藏泽当蛇绿混杂岩研究新进展. 中国区域地质, 4: 316-322. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD504.005.htm
      [57] 耿全如, 茅燕石, 1991. 新疆东天山细碧角斑岩系的岩相学、矿物学特征和成因. 中国地质科学院成都地质矿产研究所所刊, 15: 119-132.
      [58] 耿全如, 潘桂棠, 郑来林, 等, 2004. 藏东南雅鲁藏布江蛇绿混杂带的物质组成及形成环境. 地质科学, 39 (3): 387-406.
      [59] 苟金, 1994. 对拉萨地区叶巴组时代归属的新认识. 西藏地质, 11: 1-6.
      [60] 顾连兴, 胡受奚, 于春水, 等, 2000. 东天山博格达造山带石炭纪火山岩及其形成环境. 岩石学报, 16 (3): 305-316. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200003000.htm
      [61] 郭锋, 范蔚茗, 王岳军, 等, 2001. 大兴安岭南段晚中生代双峰式火山作用. 岩石学报, 17 (1): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101016.htm
      [62] 黄汲清, 陈炳蔚, 1987. 中国及邻区特提斯海的演化. 地质出版社, 1-74.
      [63] 金成伟, 周云生, 1978. 喜马拉雅和冈底斯山弧形山系中的岩浆岩带及其形成模式. 地质科学, (4): 297-312.
      [64] 李才, 王天武, 李惠民, 等, 2003. 冈底斯地区发现印支期巨斑花岗闪长岩—古冈底斯造山的存在证据. 地质通报, 22 (5): 364-366. doi: 10.3969/j.issn.1671-2552.2003.05.011
      [65] 李昌年, 1992. 火成岩微量元素岩石学. 武汉: 中国地质大学出版社, 10-90.
      [66] 李廷栋, 2002. 青藏高原地质科学研究的新进展. 地质通报, 21 (7): 371-376. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200207001.htm
      [67] 李伍平, 李献华, 2004. 燕山造山带中段晚侏罗世中酸性火山岩的成因及其意义. 岩石学报, 20 (3): 501-510. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403014.htm
      [68] 路远发, 2004. Geokit: 一个用VBA构建的地球化学工具软件包. 地球化学, 33 (5): 459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004
      [69] 毛国政, 胡敬仁, 谢尧武, 2002. 拉萨地区叶巴组的特征及形成环镜. 西藏地质, 20: 12-18.
      [70] 潘桂棠, 陈智梁, 李兴振, 等, 1997. 东特提斯地质构造形成演化. 北京: 地质出版社, 1-218.
      [71] 潘桂棠, 王立全, 朱弟成, 2004. 青藏高原区域地质调查中几个重大科学问题的思考. 地质通报, 22 (7): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200401003.htm
      [72] 钱青, 2001. Adakite的地球化学特征及成因. 岩石矿物学杂志, 20 (3): 297-306. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200103011.htm
      [73] 钱青, 王焰, 1999. 不同构造环境中双峰式火山岩的地球化学特征. 地质地球化学, 27 (4): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199904004.htm
      [74] 曲永贵, 王永胜, 张树岐, 等, 2003. 西藏申扎地区晚三叠世多布日组地层剖面的启示——对冈底斯印支运动的地层学制约. 地质通报, 22 (7): 470-473. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200307001.htm
      [75] 任纪舜, 肖黎薇, 2004.1∶25万地质填图进一步揭开了青藏高原大地构造的神秘面纱. 地质通报, 23 (1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200401002.htm
      [76] 王乃文, 王思恩, 刘桂芳, 等, 1983. 西藏拉萨地区的海陆交互相侏罗系与白垩系. 地质学报, 57 (1): 83-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198301008.htm
      [77] 王全海, 王保生, 李金高, 等, 2002. 西藏冈底斯岛弧及其铜多金属矿带的基本特征与远景评估. 地质通报, 21 (1): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200201006.htm
      [78] 王焰, 钱青, 刘良, 等, 2000. 不同构造环境中双峰式火山岩的主要特征. 岩石学报, 16 (2): 169-173. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002003.htm
      [79] 汪云亮, 张成江, 修淑芝, 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17 (3): 413-421. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103008.htm
      [80] 肖序常, 李廷栋, 李光岑, 等, 1988. 喜马拉雅岩石圈构造演化总论. 北京: 地质出版社, 1-209.
      [81] 杨日红, 李才, 迟效国, 等, 2003. 西藏永珠—纳木湖蛇绿岩地球化学特征及其构造环境初探. 现代地质, 17 (1): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200301003.htm
      [82] 阴家润, 苟金, 裴树文, 等, 1998. 拉萨地块叶巴组内中侏罗世双壳类动物群及其古地理意义. 中国区域地质, 17 (2): 132-136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD802.003.htm
      [83] 张宗清, 唐索寒, 王进辉, 等, 2001. 白云鄂博矿床白云岩的Sm-Nd、Rb-Sr同位素体系. 岩石学报, 17 (4): 637-942. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200104013.htm
      [84] 张宗清, 张旗, 1995. 北秦岭晚元古代宽坪蛇绿岩中变质基性火山岩的地球化学特征. 岩石学报, 11 (增刊): 165-177. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB5S1.012.htm
      [85] 郑来林, 耿全如, 董翰, 等, 2003. 波密地区帕隆藏布残留蛇绿混杂岩带的发现及其意义. 沉积与特提斯地质, 23 (1): 28-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200301003.htm
      [86] 郑有业, 高顺宝, 程力军, 等, 2004a. 西藏冲江大型斑岩铜(钼金) 矿床的发现及意义. 地球科学——中国地质大学学报, 29 (3): 333-339. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200403011.htm
      [87] 郑有业, 薛迎喜, 程少军, 等, 2004b. 西藏驱龙超大型斑岩铜(钼) 矿床: 发现、特征及意义. 地球科学——中国地质大学学报, 29 (1): 103-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401018.htm
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  3565
    • HTML全文浏览量:  93
    • PDF下载量:  3
    • 被引次数: 0
    出版历程
    • 收稿日期:  2005-08-23
    • 刊出日期:  2005-11-25

    目录

      /

      返回文章
      返回