Zircon U-Pb Ages and Oxygen Isotope Compositions for Granite at Xinkailing in the Beihuaiyang Zone and Their Significance
-
摘要: 对大别造山带北麓的北淮阳新开岭地区岩浆岩进行了锆石阴极发光显微结构观察和SHRIMP法锆石微区UPb定年.在锆石阴极发光图像中, 一个花岗岩样品中的大部分锆石颗粒具有明显的初始岩浆振荡环带, 为典型的岩浆锆石, 少有蚀变的颗粒和/或区域; 而另一个花岗岩样品中的锆石虽然同样具有振荡环带, 但是大部分颗粒中心的初始岩浆环带被扰动, 指示这些锆石为岩浆锆石, 受到了较强的后期热液蚀变的改造.对锆石具有初始岩浆环带和溶蚀结构的区域分别进行SHRIMP法UPb微区定年结果表明, 这些岩浆岩的形成年龄为(820±4) Ma, 热液蚀变作用发生的时间为(780±4) Ma.新开岭地区新元古代花岗质岩石的形成和后期超固相热液蚀变作用分别对应于超大陆裂解之前的约830~795Ma岩浆活动和裂解过程中约780~745Ma的岩浆作用.单矿物激光氟化氧同位素分析结果表明, 这些岩浆岩具有非常低的δ18O值, 其中锆石为1.90‰~5.78‰, 石英为-2.88‰~-7.67‰, 斜长石为-4.01‰~-11.40‰.锆石和其他矿物之间表现出强烈的氧同位素不平衡, 而其他矿物之间则达到了氧同位素的再平衡.结合不同δ18O值锆石的内部结构特征, 认为该地区的热液蚀变作用为超固相条件下的高温热液蚀变.这一过程不但改变了石英等矿物的氧同位素组成, 同时也不同程度地改变了锆石的氧同位素组成, 所以这些样品中低δ18O值锆石可能是超固相条件下热液蚀变的结果.石英中具有异常低的δ18O值表明蚀变流体来源应为寒冷气候大气降水.所以, 新开岭地区亏损18O蚀变岩石的形成与裂谷岩浆作用和雪球地球事件相耦合的高温大气降水热液蚀变有关.Abstract: SHRIMP zircon U-Pb dating and oxygen isotope analysis were carried out for granites at Xinkailing in the Beihuaiyang zone. In cathodoluminescence (CL) images, most zircons in one granite sample exhibit primary oscillatory zoning, which is typical for magmatic zircon, but some grains have internal structure altered by hydrothermal fluid; whereas the oscillatory zonations of most zircons in the other granite have been significantly disturbed, reflecting much stronger modification by hydrothermal alteration. The zircon U-Pb dating for the oscillatory zoned and hydrothermally altered domains yields two groups of weighted mean 206Pb/238U ages at (820±4) Ma and (780±4) Ma, respectively, which are interpreted as timing of granite emplacement and hydrothermal alteration. According to the obtained ages, the formation and later supersolidus hydrothermal alteration of the Xinkailing granite correspond to the two stages of bimodal magmatism with ages of ca. 830 to 795 Ma and ca. 780 to 745 Ma, respectively, for pre-rift and syn-rift during the breakup of the supercontinent Rodinia. They have very low δ18O values, with 1.90‰ to 5.78‰ for zircon, -2.88‰ to -7.67‰ for quartz, and -4.01‰ to -11.40‰ for plagioclase. Zircon and other minerals display obvious O isotope disequilibrium, while the other minerals approached O isotope re-equilibration at different temperatures during the hydrothermal alteration. Zircons with a more strongly altered internal structure have lower relative δ18O values. Therefore, the high-T hydrothermal alteration at Xinkailing may have occurred under supersolidus conditions, which not only completely reset the O isotope composition of quartz, but also partly modified the O isotope composition of zircon. The low δ18O values of zircon in some samples may be partly acquired from the low δ18O hydrothermal fluid. The anomalously low δ18O values of -2.88‰ to -7.67‰ for quartz indicate that the hydrothermal fluid may be derived from the meteoric water of a cold paleoclimate. Therefore, the formation of low δ18O granite during the mid-Neoproterozoic at Xinkailing is correlated with rifting magmatism and the snowball earth event.
-
Key words:
- Xinkailing /
- zircon /
- O isotope /
- U-Pb age /
- hydrothermal alteration /
- rift tectonics
-
图 6 新开岭岩浆岩石英与其他矿物δ-δ图解
矿物对氧同位素分馏方程据Zheng(1993a, 1993b, 1995)
Fig. 6. δ-δ plot of oxygen isotope compositions for quartz and other minerals for granite at Xinkailing
表 1 北淮阳新开岭地区花岗岩SHRIMP锆石U-Pb年龄测定结果
Table 1. Zircon U-Pb ages for granite at Xinkailing in the Beihuaiyang zone
表 2 北淮阳新开岭地区岩浆岩单矿物氧同位素组成及矿物对温度
Table 2. O isotope composition and temperature of mineral couple for grantites at Xinkailing in the Beihuaiyang zone
-
[1] Ames, L., Zhou, G.Z., Xiong, B.C., 1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics, 15(2): 472-489. doi: 10.1029/95TC02552 [2] Ayers, J.C., Dunkle, S., Gao, S., et al., 2002. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan ultrahigh-pressure metamorphic belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology, 186, 315-331. doi: 10.1016/S0009-2541(02)00008-6 [3] Baker, J., Mathews, A., Mattey, D., et al., 1997. Fluid-rock interactions during ultra-high pressure metamorphism, Dabie Shan, China. Geochim. Cosmochim. Acta, 61: 1685-1696. doi: 10.1016/S0016-7037(97)00005-7 [4] Blattner, P., Grindley, G.W., Adams, C.J., 1997. Low 18O terranes tracking Mesozoic polar climates in the South Pacific. Geochim. Cosmochim. Acta, 61: 569-576. doi: 10.1016/S0016-7037(96)00350-X [5] Brandriss, M.E., Nevle, R.J., Bird, D.K., et al., 1995. Imprint of meteoric water on the stable isotope compositions of igneous and secondary minerals, complex, East Greenland. Contrib. Mineral. Petrol. , 121: 74-86. doi: 10.1007/s004100050090 [6] Chen, D.G., Etienne, D., Cheng, H., et al., 2003. Preliminary study of micro-scale zircon oxygen isotopes for Dabie-Sulu metamorphic rocks: Ion probe in situ analyses. Chinese Sci. Bull. , 48(16): 132-139. [7] Chen, F.K., Guo, J. H., Jiang, L. L., et al., 2003. Provenance of the Beihuaiyang lower-grade metamorphic zone of the Dabie ultrahigh-pressure collisional orogen, China: Evidence from zircon ages. J. Asian Earth Sci. , 22: 343-352. doi: 10.1016/S1367-9120(03)00068-3 [8] Compston, W., Williams, I. S., Kirschvink, J. L., et al., 1992. Zircon U-Pb ages for the Early Cambrian timescale. J. Geol. Sco. London, 149: 171-184. doi: 10.1144/gsjgs.149.2.0171 [9] Faure, M., Lin, W., Shu, L., et al., 1999. Tectonics of the Dabieshan(eastern China) and possible exhumation mechanism of ultrahigh-pressure rocks. Terra Nova, 11 (6): 251-258. doi: 10.1046/j.1365-3121.1999.00257.x [10] Fortier, S.M., Giletti, B.J., 1989. An empirical model for predicting diffusion coefficients in silicate minerals. Science, 245: 1481-1484. doi: 10.1126/science.245.4925.1481 [11] Geisler, T., Rashwan, A.A., Rann, M.K., et al., 2003. Low temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineral. Mag. , 67: 485-508. doi: 10.1180/0026461036730112 [12] Gilliam, C.E., Valley, J.W., 1997. Low δ18O magmas, Isle of Skye, Scotland: Evidence from zircons. Geochim. Cosmochim. Acta, 61: 4975-4981. doi: 10.1016/S0016-7037(97)00297-4 [13] Gong, B., Zheng, Y.F., 2003. A CO2-laser technique for oxygen isotope analysis of silicates. Earth Science Frontiers, 10(2): 279-286(in Chinese with English abstract). [14] Grimmer, J.C., Ratschbacher, L., McWilliams, M., et al., 2003. When did the ultrahigh-pressure rocks reach the surface? A 207Pb/206Pb zircon, 40Ar/39Ar white mica, Si-in-white mica, single-grain provenance study of Dabie Shan synorogenic foreland sediments. Chem. Geol. , 197: 87-100. doi: 10.1016/S0009-2541(02)00321-2 [15] Hacker, B.R., Ratshbacher, L., Webb, L., et al., 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth Planet. Sci. Lett. , 161: 215-230. doi: 10.1016/S0012-821X(98)00152-6 [16] Hacker, B., Ratschbacher, L., Webb, L., et al., 2000. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing. J. Geophysical Research, 105: 13339-13364. doi: 10.1029/2000JB900039 [17] Hoskin, P.W.O., 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69: 637-648. doi: 10.1016/j.gca.2004.07.006 [18] Jemielita, R.A., Davis, D.W., Krough, T. E., 1990. U-Pb evidence for Abitibi gold mineralization postdating greenstone magmatism and metamorphism. Nature, 346: 831-834. doi: 10.1038/346831a0 [19] Jiang, L. L., Wu, W. P., Chu, R. D., et al., 2003. Postcollisional extensional and thrust-nappe structures in northern part of Dabie Mountains. Chinese Sci. Bull. , 48(14): 1557-1563. doi: 10.1360/csb2003-48-14-1557 [20] Kempe, U., Boinbach, K., Matukov, D., 2004. Pb-Pb and U/Pb zircon dating of subvolcanic rhyolite as a time marker for Hercyman granite magmatism and Sn mineralisation in the Eiben stock granite, Erzgebirge, Germany: Considering effects of zircon alteration. Mineral. Deposita, 39: 646-669. doi: 10.1007/s00126-004-0435-y [21] King, E.M., Valley, J.W., Davis, D.W., et al., 1998. Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province: Indicator of magmatic source. Precambrian Research, 92: 365-387. doi: 10.1016/S0301-9268(98)00082-5 [22] King, E.M., Valley, J.W., 2001. The source, magmatic contamination, and alteration of the Idaho batholith. Contrib. Mineral. Petrol. , 142: 72-88. doi: 10.1007/s004100100278 [23] Lackey, J.S., Hinke, H.J., Valley, J., 2002. Tracking contamination in felsic magma chambers withδ18O of magmatic garnet and zircon. Geochim. Cosmochim. Acta, 66: A428. [24] Li, Z.X., Li, X.H., Kinney, P.D., et al., 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Res. , 122: 85-109. doi: 10.1016/S0301-9268(02)00208-5 [25] Li, Z.X., Li, X.H., Kinney, P.D., et al., 1999. The breakup of Rodinia: Did it start with a mantle plume beneath South China? Earth Planet. Sci. Lett. , 173: 171-181. [26] Ludwig, K.R., 2001. Users manual for Isoplot/Ex(rev. 2. 49): A geochronological tool for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 55. [27] Ma, G.G., Li, H.Q., Zhang, Z.C., 1984. An investigation of the age limits of the Sinian system in South China. Bull. Yichang Inst. Geol. Miner. Res. , 8: 1-29(in Chinese with English abstract). [28] Ma, W.P., Wang, G.Y., Wang, G.S., 2001. Jinningian plutonic belt in the Fuziling Group and its tectonic implication. Geol. Rev. , 47(5): 476-482(in Chinese with English abstract). [29] Nevle, R.J., Brandriss, M.E., Bird, D.K., et al., 1994. Tertiary plutons monitor climate change in East Greeland. Geology, 22: 775-778. [30] O'Connor, Y. L., Morrison, J., 1999. Oxygen isotope constraints on the petrogenesis of the Sybille intrusion of the Proterozoic Laramie anorthosite complex. Contrib. Mineral. Petrol. , 136: 81-91. doi: 10.1007/s004100050525 [31] Rayner, N., Stern, R.N., Carr, S.D., 2005. Grain-scale variations in trace element composition of fluid-altered zircon, Acasta gneiss complex, northwestern Canada. Contrib. Mineral. Petrol. , 148: 721-734. doi: 10.1007/s00410-004-0633-8 [32] Robb, L.J., Davis, D.W., Kamo, S.L., et al., 1992. Ages of altered granites adjoining the Witwatersrand basin with implications for the origin of gold and uranium. Nature, 357: 677-680. doi: 10.1038/357677a0 [33] Rowley, D.B., Xue, F., Tucker, R.D., et al., 1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Ph zircon geochronology. Earth and Planet. Science Letters, 151: 191-203. doi: 10.1016/S0012-821X(97)81848-1 [34] Rumble, D., Giorgis, D., Ireland, T., et al., 2002. Low δ18O zircons, U-Pb dating, and the age of the Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochim. Cosmochim. Acta, 66: 2299-2306. doi: 10.1016/S0016-7037(02)00844-X [35] Rumble, D., Wang, Q.C., Zhang, R.Y., 2000. Stable isotope geochemistry of marbles from the coesite UHP terrains of Dabieshan and Sulu, China. Lithos, 52: 79-95. doi: 10.1016/S0024-4937(99)00085-7 [36] Rumble, D., Yui, T.F., 1998. The Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochim. Cosmochim. Acta, 62: 3307-3321. doi: 10.1016/S0016-7037(98)00239-7 [37] Taylor, H.P., 1986. Igneous rocks. Ⅱ. Isotopic case studies of circumpacific magmatism. In: Valley, J.W., Taylor, H. P., O'Niel, J. R., eds., Stable isotopes in hightemperature geological processes. Mineral. Soc. Am., Rev. Mineral., 16: 273-317. [38] Taylor, H.P., Sheppard, S.M.F., 1986. Igneous rocks. Ⅰ. Processes of isotopic fractionation and isotopic systematics. In: Valley, J. W., Taylor, H. P., O'Niel, J. R., eds., Stable isotopes in high-temperature geological processes. Mineral. Soc. Am., Rev. Mineral., 16: 227-271. [39] Tayor, H.P., 1977. Water/rock interactions and the origin of H2O in granitic batholiths. J. Geol. Sco. Lond. , 133: 509-558. doi: 10.1144/gsjgs.133.6.0509 [40] Valley, J.W., Bindeman, I.N., Peck, W.H., 2003. Empirical calibration of oxygen isotope fractionation in zircon. Geochim. Cosmochim. Acta, 67: 3257-3266. doi: 10.1016/S0016-7037(03)00090-5 [41] Valley, J.W., Chiarenzeli, J.R., McLelland, J.M., 1994. Oxygen isotope geochemistry of zircon. Earth Planet. Sci. Lett. , 126: 187-206. doi: 10.1016/0012-821X(94)90106-6 [42] Valley, J.W., Kinney, P.D., Schulze, D.J., et al., 1998. Zircon megacrysts from kimberlite: Oxygen isotope variability among mantle melts. Contrib. Mineral. Petrol. , 133: 1-11. doi: 10.1007/s004100050432 [43] Vavra, G., Gebauer, D., Schmid, R., 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone(Southern Alps): An ion microprobe (SHRIMP) study. Contrib. Mineral. Petrol. , 122: 337-358. doi: 10.1007/s004100050132 [44] Vavra, G., Schmid, R., Gebauer, D., 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibole to granulite facies zircon: Geochronology of the Ivren Zone (Southern Alps). Contrib. Mineral. Petrol. , 134: 380-404. doi: 10.1007/s004100050492 [45] Watson, E.B., Cherniak, D.J., 1997. Oxygen diffusion in zircon. Earth Planet. Sci. Lett. , 148: 527-54. doi: 10.1016/S0012-821X(97)00057-5 [46] Wei, C.S., Zheng, Y.F., Zhao, Z.F., et al., 2002. Oxygen and neodymium isotope evidence for recycling of juvenile crust in northeast China. Geology, 30: 375-378. [47] Williams, I.S., 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben, M.A., ShanksⅢ, W.C., Ridley, W.I., eds., Applications of microanalytical techniques to understanding mineralizing processes. Rev. Econ. Geol., 7: 1-35. [48] Wu, Y.B., Zheng, Y.F., 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569. doi: 10.1007/BF03184122 [49] Wu, Y.B., Zheng, Y.F., Gong, B., et al., 2004. Zircon U-Pb ages and oxygen isotope compositions of the Luzhenguan complex in the Beihuaiyang zone. Acta Peotrologica Sinica, 20(5): 1007-1024(in Chinese with English abstract). [50] Xie, Z., Chen, J.F., Zhang, X., et al., 2002. Geochronolgy of Neoproterozoic mafic intrusions in North Huaiyang area. Acta Geoscientia Sinica, 23(6): 517-520(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200206005.htm [51] Yin, C.Y., Liu, D.Y., Gao, L.Z., 2003. The lower boundary age of the Nanhua System and the Gucheng glacial stage: Evidence from SHRIMPⅡ dating. Chinese Sci. Bull. , 18(6): 1657-1662. [52] Yui, T. F., Rumble, D., Lo, C. H., 1997. Stable isotope characteristics of eclogites from the ultra-high-pressure metamorphic terrain, central-east China. Chem. Geol. , 137: 135-147. doi: 10.1016/S0009-2541(96)00153-2 [53] Yui, T.F., Rumble, D., Lo, C.H., 1995. Unusually low δ18O ultrahigh-pressure metamorphic rocks from the Sulu terrain, eastern China. Geochim. Cosmochim. Acta, 59: 2859-2864. doi: 10.1016/0016-7037(95)00161-R [54] Zheng, Y. F, 1993a. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim. Cosmochim. Acta, 57: 1079-1091. doi: 10.1016/0016-7037(93)90042-U [55] Zheng, Y.F., 1993b. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet. Sci. Lett. , 120: 247-263. doi: 10.1016/0012-821X(93)90243-3 [56] Zheng, Y.F., 1995. Oxygen isotope fractionation in magnetites: Structural effect and oxygen inheritance. Chem. Geol. , 121: 309-316. doi: 10.1016/0009-2541(94)00149-3 [57] Zheng, Y. F., 2003. Neoproterozoic magmatic activity and global change. Chinese Sci. Bull. , 48(16): 1705-1720. doi: 10.1360/csb2003-48-16-1705 [58] Zheng, Y.F., Fu, B., 1998. Estimation of oxygen diffusivity from anion porosity in minerals. Geochem. J. , 32: 71-89. doi: 10.2343/geochemj.32.71 [59] Zheng, Y.F., Fu, B., Gong, B., et al., 1996. Extreme 18O depletion in eclogite from the Su-Lu terrain in East China. Eur. J. Mineral. , 8: 317-323. doi: 10.1127/ejm/8/2/0317 [60] Zheng, Y.F., Fu, B., Gong, B., et al., 2003a. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth Sci. Rev. , 62: 105 -161. doi: 10.1016/S0012-8252(02)00133-2 [61] Zheng, Y.F., Fu, B., Li, Y.L., et al., 1998. Oxygen and hydrogen isotope geochemistry of ultrahigh pressure eclogites form the Dabie Mountains and the Sulu terrane. Earth and Planet. Sci. Lett. , 155: 113-129. doi: 10.1016/S0012-821X(97)00203-3 [62] Zheng, Y.F., Fu, B., Xiao, Y.L., et al., 1999. Hydrogen and oxygen isotope evidence for fluid-rock interactions in the stages of pre- and post-UHP metamorphism in the Dabie Mountains. Lithos, 46: 677-693. doi: 10.1016/S0024-4937(98)00090-5 [63] Zheng, Y.F., Gong, B., Zhao, Z.F., et al., 2003b. Two types of gneisses associated with eclogite at Shuanghe in the Dabie terrane: Carbon isotope, zircon U-Pb dating and oxygen isotope. Lithos, 70: 321-343. doi: 10.1016/S0024-4937(03)00104-X [64] Zheng, Y.F., Wu, Y.B., Chen, F.K., et al., 2004. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta, 68: 4159-4179. [65] Zheng, Y.F., Zhou, J.B., Wu, Y.B., et al., 2005. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction. Inter. Geol. Rev. , 47: 851-871. doi: 10.2747/0020-6814.47.8.851 [66] Zhou, C.M., Tucker, R., Xiao, S.H., et al., 2004. New constraints on the ages of Neoproterozoic glaciations in South China. Geology, 32: 437-440. [67] Zhou, J.B., Zheng, Y.F., Li, L., et al., 2001. Accretionary wedge of the subduction of the Yangtze plate. Acta Geol. Sinica, 75(3): 338-352(in Chinese with English abstract). [68] Zhou, J.B., Zheng, Y.F., Wu, Y.B., 2002. Zircon U-Pb ages for Wulian granites in northwest Sulu and their tectonic implications. Chinese Sci. Bull. , 47(22): 1745-1750 (in Chinese). doi: 10.1360/csb2002-47-22-1745 [69] 龚冰, 郑永飞, 2003. 硅酸盐矿物氧同位素组成的激光探针分析. 地学前缘, 10(2): 279-286. doi: 10.3321/j.issn:1005-2321.2003.02.003 [70] 马国干, 李华芹, 张自超, 1984. 华南地区震旦纪时限范围的研究. 宜昌地质矿产研究所所刊, 8: 1-29. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198412001003.htm [71] 马文璞, 王关玉, 王果胜, 2001. 佛子岭岩群中的晋宁期深成岩带及其构造含义. 地质论评, 47(5): 476-482. doi: 10.3321/j.issn:0371-5736.2001.05.004 [72] 吴元保, 郑永飞, 龚冰, 等, 2004. 北淮阳庐镇关岩浆岩锆石U-Pb年龄和氧同位素组成. 岩石学报, 20(5): 1007-1024. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200405002.htm [73] 谢智, 陈江峰, 张巽, 等, 2002. 北淮阳新元古代基性侵入岩年代学初步研究. 地球学报, 23(6): 517-520. doi: 10.3321/j.issn:1006-3021.2002.06.006 [74] 周建波, 郑永飞, 李龙, 等, 2001. 扬子板块俯冲的构造加积楔. 地质学报, 57(3): 338-351. doi: 10.3321/j.issn:0001-5717.2001.03.007 [75] 周建波, 郑永飞, 吴元保, 2002. 苏鲁造山带西北缘五莲花岗岩中锆石U-Pb年龄及其地质意义. 科学通报, 47(22): 1745-1750. doi: 10.3321/j.issn:0023-074X.2002.22.015