Effects of Retrogression of Ultrahigh-Pressure Eclogites on Magnetic Susceptibility and Anisotropy
-
摘要: 系统测量了中国大陆科学钻探(CCSD) 主孔10 0~ 2 0 0 0m超高压榴辉岩的磁化率及其各向异性, 并进行了相应的岩石学和矿物学分析.研究结果表明, 不同退变质程度榴辉岩的磁化率特征具有明显差别: 新鲜-弱退变质榴辉岩对应超高压榴辉岩相, 平均体积磁化率κ=1.4× 10-3SI, 磁化率各向异性度Pj=1.0 9, 磁性载体主要是顺磁性矿物石榴子石和绿辉石; 中等-强退变质榴辉岩对应角闪岩相, κ =5.1× 10-3SI, Pj=1.2 0, 磁性载体主要是退变质所产生的磁铁矿和钛铁矿-钛磁铁矿; 完全退变质榴辉岩对应绿帘角闪岩相-绿片岩相, κ =1.3× 10-3SI, Pj=1.08, 磁性载体主要来自顺磁性矿物角闪石、绿帘石、黑云母等.该研究为超高压变质岩石地区磁异常的解释提供了基础数据和重要的科学约束, 同时也为大陆深俯冲峰期变质岩石和折返阶段岩石退变质程度提供了磁化率鉴别特征.Abstract: The magnetic susceptibility and anisotropy of the ultrahigh-pressure (UHP) eclogite from Chinese Continent Scientific Drilling (CCSD) 100-2 000 m mainhole and their relationship with petrology and mineralogy are systematically investigated. The results show that eclogites of different retrogressions have specific magnetic characters. Fresh to weakly retrograded eclogites which correspond to UHP eclogite facies have relatively low magnetic susceptibility (κ=1.4×10-3 SI) and low anisotropy (Pj=1.09), the paramagnetic mineral omphacite and garnet being the principal carriers. For moderately to strongly retrograded eclogites corresponding to amphibolite facies, because of the formation of magnetite and ilmenite by retrogression, the magnetic susceptibility and anisotropy increases up to κ=5.1×10-3 SI and Pj=1.20. However, for the totally retrograded eclogites corresponding with epidote amphibolite to greenschist facies, magnetite disappears while ilmenite and titanomagnetite changes to sphene. Thus the magnetic susceptibility and anisotropy reduces to κ=1.3×10-3 SI and Pj=1.08, respectively. This research provides fundamental data and constrains for the interpretation of geophysical magnetic surveying on the UHP metamorphic terranes. Furthermore, the magnetic characters show us the insight into the identification of the peak metamorphic rocks during subduction and the degree of retrogression during exhumation.
-
Key words:
- magnetic susceptibility /
- anisotropy /
- UHP eclogite /
- retrogression /
- CCSD /
- Donghai
-
图 4 超高压榴辉岩P-T轨迹与磁化率变化关系(张泽明等, 1999)
Fig. 4. P-T path and magnetic susceptibility of ultrahigh-pressure eclogites
表 1 CCSD主孔退变质榴辉岩分类及其代表性样品的矿物组成
Table 1. Classification of retrograded eclogites and mineral compositions of core samples from CCSD main holes
表 2 CCSD主孔榴辉岩的密度、磁化率及其各向异性度统计
Table 2. Statistics of density and magnetic susceptibility and anisotropy of eclogites from CCSD main hole
-
[1] Abalos, B., Aranguren, A., 1998. Anisotropy of magnetic susceptibility of eclogites: Mineralogical origin and correlation with the tectonic fabric(Cabo Ortegal, Spain). Geodinamica Acta (Paris), 11(6): 271-283. doi: 10.1080/09853111.1998.11105325 [2] Borradaile, G.J., 1988. Magnetic susceptibility, petrofabrics and strain. Tectonophysics, 156: 1-20. doi: 10.1016/0040-1951(88)90279-X [3] Borradaile, G. J., Henry, B., 1997. Tectonic applications of magnetic susceptibility and its anisotropy. Earth Science Reviews, 42: 49-93. doi: 10.1016/S0012-8252(96)00044-X [4] Borradaile, G. J., Keeler, W., Alford, C., et al., 1987. Anisotropy of magnetic susceptibility of some metamorphic minerals. Phys. Earth Planet. Inter. , 48: 161-166. doi: 10.1016/0031-9201(87)90119-1 [5] Chopin, C., 1984. Cosite and pure pyrope in high-grade bluechists of the western Alps: A first record and some consequences. Contrib. Mineral. Petrol. , 86: 107-118. doi: 10.1007/BF00381838 [6] Clark, D.A., French, D.H., Lackie, M.A., et al., 1992. Magnetic petrology: Application of integrated rock magnetic and petrological techniques to geological interpretation of magnetic surveys. Explor. Geophys. , 23: 65-68. doi: 10.1071/EG992065 [7] Cong, B.L., 1996. Ultrahigh-pressure metamorphic rocks in the Dabieshan-Sulu region of China. Science Press, Beijing. [8] Dobrzhinetskaya, L.F., Eide, E., Larsen, R., et al., 1995. Diamond in metamorphic rocks of the western Gneiss Region in Norway. Geology, 23: 597-600. [9] Dunlop, D.J., 1995. Magnetism in rocks. Journal of Geophysical Research, 100: 2161-2174. doi: 10.1029/94JB02624 [10] Florio, G., Fedi, M., Rapolla, A., et al., 1993. Anisotropic magnetic susceptibility in the continental lower crust and its implications for the shape of magnetic anomalies. Geophys. Res. Lett. , 20: 2323-2326. doi: 10.1029/93GL02630 [11] Jelínek, V., 1981. Characterization of magnetic fabric of rocks. Tectonophysics, 79: 63-67. doi: 10.1016/0040-1951(81)90110-4 [12] Liou, J.G., Maruyama, S., Cong, B., 1998. Introduction to Goedynamics for high- and ultrahigh-pressure metamorphism. The Island Arc, 7(1-2): 115. doi: 10.1046/j.1440-1738.1998.00188.x [13] Liu, F.L., Zhang, Z.M., Xu, Z.Q., 2003. Three-dimensional distribution of ultrahigh-pressure minerals in Sulu terrane. Acta Geologica Sinica, 77(1): 69-84(in Chinese with English abstract). [14] Liu, Q.S., Gao, S., Zheng, J.P., 1998. Magnetic structure of the continental crust: Significance for crustal structure and evolution. Chinese Science Bulletin, 43(12): 1246-1252 (in Chinese). doi: 10.1360/csb1998-43-12-1246 [15] Nakamura, D., Hirajima, T., 2000. Granulite-facies overprinting of ultrahigh pressure metamorphic rocks, Northeastern Sulu region, eastern China. Journal of Petrology, 41: 563-582. doi: 10.1093/petrology/41.4.563 [16] Richter, P., 1994. Comment on" Magnetic fabrics, crystallographic preferred orientation and strain of progressively deformed metamorphosed pelites in the Helvetic zone of the Central Alps(Quartzenschiefer Formation)" by Richter, C., Ratschbacher, L., Frisch, W. . J. Geophys. Res., 99: 21825-21827. [17] Rochette, P., Jackson, M., Aubourg, C., 1992. Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev. Geophys. , 30: 209-226. doi: 10.1029/92RG00733 [18] Schnetzler, C.C., Allenby, R.J., 1983. Estimation of lower crust magnetization from satellite derived anomaly field. Tectonophysics, 93: 33-45. doi: 10.1016/0040-1951(83)90232-9 [19] Smith, D.C., 1984. Coesite in clinopyroxine in the Caledonides and its implications for geodynamics. Nature, 310: 641644. [20] Sobolev, N.V., Shatsky, V.S., 1990. Diamond inclusions in garnets from metamorphic rocks. Nature, 343: 742-746. doi: 10.1038/343742a0 [21] Wang, Q., Ishiwatari, A., Zhao, Z., et al., 1994. Cosite-bearing granulite retrograded from eclogite in Weihai, eastern China. Europe Journal of Mineralogy, 5: 141-152. [22] Wasilewski, P., Warner, R.D., 1988. Magnetic petrology of deep crustal rocks-Ivrea Zone, Italy. Earth and Planetary Science Letters, 87: 347-361. doi: 10.1016/0012-821X(88)90022-2 [23] Wasilewski, P.J., Thomas, H.H., Mayhew, M.A., 1979. The Moho as a magnetic boundary. Geophys. Res. Lett. , 6: 541-544. doi: 10.1029/GL006i007p00541 [24] Xu, J., Chen, Y.C., Wang, D.H., et al., 2004. Titanium mineralization in the ultrahigh-pressure metamorphic rocks from Chinese Continental Scientific Drilling 100-2 000 m main hole. Acta Petrologica Sinica, 20(1): 119-126(in Chinese with English abstract). [25] Xu, S., Okay, A., Ji, S., et al., 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 256(5053): 80-82. doi: 10.1126/science.256.5053.80 [26] Xu, S.T., Liu, Y.C., Chen, G.B., et al., 2003. New discovery of diamonds of eclogite from Sulu area. Chinese Science Bulletin, 48(10): 1069-1075(in Chinese). doi: 10.1360/csb2003-48-10-1069 [27] Xu, Z.Q., 2004. The scientific goals and investigation progresses of the Chinese Continental Scientific Drilling Project. Acta Petrologica Sinica, 20(1): 1-8(in Chinese with English abstract). [28] Xu, Z.Q., Yang W.C., Zhang, Z.M., 1998. Scientific significance and site-selection of the first Chinese Continental Scientific Deep Drillhole. Continental Dynamics, 3: 1-13. [29] Xu, Z.Q., Zhang, Z.M., Liu, F.L., et al., 2003. Exhumation structure and mechanism of the Sulu ultrahigh-pressure metamorphic belt, central China. Acta Geologica Sinica, 77(4): 443-450(in Chinese with English abstract). [30] You, Z.D., Su. S.G., Liang, F.H., et al., 2004. Petrography and metamorphic deformational history of the ultrahigh pressure metamorphic rocks from the 100-2 000 m core of Chinese Continental Scientific Drilling, China. Acta Petrologica Sinica, 20(1): 43-52(in Chinese with English abstract). [31] Yu, Q.F., Guo, Y.Z., Meng, X.H., et al., 2002. Petrophysical parameters at continental scientific drilling site in Subei, China. Chinese J. Geophys. , 45(1): 93-100(in Chinese with English abstract). [32] Zhang, R., Hirajima, T., Banno, S., et al., 1995. Petrology of ultrahigh pressure rocks from the southern Sulu region, eastern China. Journal of Metamorphic Geology, 13: 659-675. doi: 10.1111/j.1525-1314.1995.tb00250.x [33] Zhang, Z.M., 1996. Disequilibrium reactions and kinetics of ultra-high pressure metamorphic rocks from the Dabie Mountains. Earth Science— Journal of China University of Geosciences, 21(5): 501-507(in Chinese with English abstract). [34] Zhang, Z.M., Xu, Z.Q., Liu, F.L., et al., 2004. Geochemistry of eclogites from the main hole(100~ 2 050 m) of the Chinese Continental Scientific Drilling project. Acta Petrologica Sinica, 20(1): 27-42(in Chinese with English abstract). [35] Zhang, Z.M., Xu, Z.Q., Xu, H.F., 1999. Metamorphism of eclogite from the ZK703 drillhole in Donghai, south Sulu (Jiangsu-Shandong) ultrahigh-pressure metamorphic belt, eastern China. Acta Geologica Sinica, 73(4): 321-333(in Chinese with English abstract). [36] Zhang, Z.M., You, Z.D., Han, Y.J., et al., 1995. Petrology metamorphic process and genesis of the Dabie-Sulu eclogite belt, east-central China. Acta Geologica Sinica, 69(4): 306-325(in Chinese with English abstract). [37] 刘福来, 张泽明, 许志琴, 2003. 苏鲁地体高压矿物的三维分布, 地质学报, 77(1): 69-84. doi: 10.3321/j.issn:0001-5717.2003.01.009 [38] 刘庆生, 高山, 郑建平, 1998. 大陆地壳磁性结构研究及意义. 科学通报, 43: 1246-1252. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199812003.htm [39] 刘庆生, 张泽明, 刘勇胜, 1999. 江苏东海地区ZK703钻孔榴辉岩的磁性结构及其深部地质意义. 现代地质, 13(S): 45-50. [40] 徐珏, 陈毓川, 王登红, 等, 2004. 中国大陆科学钻探主孔100~ 2 000米超高压变质岩中的钛矿化. 岩石学报, 20(1): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401009.htm [41] 徐树桐, 刘贻灿, 陈冠宝, 等, 2003. 大别山、苏鲁地区榴辉岩中新发现的微粒金刚石. 科学通报, 48(10): 10691075. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200310016.htm [42] 许志琴, 2004. 中国大陆科学钻探工程的科学目标及初步成果. 岩石学报, 20(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401000.htm [43] 许志琴, 张泽明, 刘福来, 等, 2003. 苏鲁高压-超高压变质带的折返构造及折返机制. 地质学报, 77(4): 443-450. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200304000.htm [44] 杨天南, 许志琴, 陈方远, 2003. 江苏东海榴辉岩向斜长角闪岩转化的研究. 地质学报, 77(4): 510-521. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200304005.htm [45] 游振东, 苏尚国, 梁凤华, 等, 2004. 中国大陆科学钻探主孔100~ 2 000 m超高压变质岩岩相学特征与变质变形史. 岩石学报, 20(1): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401003.htm [46] 余钦范, 郭友钊, 孟小红, 等, 2002. 苏北大陆科学钻探靶区岩石物理性质. 地球物理学报, 41(1): 93-100. doi: 10.3321/j.issn:0001-5733.2002.01.012 [47] 张泽明, 1996. 大别山地区超高压变质岩的不平衡退变质反应及动力学. 地球科学———中国地质大学学报, 21(5): 501-507. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX605.009.htm [48] 张泽明, 许志琴, 刘福来, 等, 2004. 中国大陆科学钻探工程主孔(100~ 2 050 m)榴辉岩岩石化学研究. 岩石学报, 20(1): 27-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401002.htm [49] 张泽明, 许志琴, 徐慧芬, 1999. 南苏鲁超高压变质带东海ZK703钻孔榴辉岩的变质作用. 地质学报, 73(4): 321-333. doi: 10.3969/j.issn.1004-9665.1999.04.006 [50] 张泽明, 游振东, 韩郁菁, 等, 1995. 大别—苏鲁榴辉岩带的岩石学、变质作用过程及成因研究. 地质学报, 69(4): 306-325. doi: 10.3321/j.issn:0001-5717.1995.04.002