Mantle Heat Flow and Deep Temperature of Jiyang Depression, Shandong, North China
-
摘要: 济阳坳陷深部地热状况对于分析岩石圈深部结构特征、探索该盆地形成和演化的地球动力学过程具有重要意义.依据济阳坳陷最新的钻探资料和深部地球物理探测结果, 按沉积盖层、上、中、下地壳4层结构, 建立了分别代表该区凹陷部位和凸起及斜坡带上的2种地壳结构模型.通过多道能谱分析, 测试了区内4 3块岩心样品的放射性元素U、Th、40K含量, 统计得出了济阳坳陷沉积盖层的平均生热率为(1.40±0.26) μW/m3.在研究大地热流分布的基础上, 结合济阳坳陷地壳各岩层放射性生热率, 采用“剥层”法, 从地表开始, 由浅到深逐步扣除各层段所提供的热量, 得到了济阳坳陷的地幔热流.并且采用相似的方法, 利用一维稳态热传导方程, 分析了地壳上地幔顶部的温度状况.结果表明, 济阳坳陷的地幔热流约为38.4~39.2 mW/m2, 占整个地表总热流量的5 8%;地幔顶部温度约为602~636℃.与世界上其他各类地质构造单元相比, 济阳坳陷无论是地幔热流值或其与地表热流之比值都是比较高的, 其深部地热状态具有介于稳定地区和构造活动区之间的特点.Abstract: The constitution of heat flow and deeper temperature status of different layers in the Jiyang depression plays an important role in analyzing the deep structure of the lithosphere, and interpreting basin formation, evolution and dynamics. According to the latest drilling data and deep geophysical sounding results from the Jiyang depression, two typical crustal structure models which represent depression part and uplift together with margin in this area were determined respectively. This crustal structure is in four layers, composed of sediments, upper, middle and lower crust, respectively. Using the multi-channel spectrum analysis method, the U, Th and 40K content of 43 core samples in the working area were obtained. Statistical results indicate that the average heat production rate of the Jiyang depression is (1.4±0.26) μW/m3. Based on the terrestrial heat flow distribution of the basin, combined with the heat production of the Jiyang depression deep crust, the mantle heat flow was calculated by means of the "stripping" method, from the shallow to the deep layer of the crust. In addition, the temperature of the upper mantle was calculated using the one-dimensional stable state heat transfer equation.Resultsindicate that the mantle heat flow for the Jiyang depression is about 38.4-39.2 mW/m2, which amounts to 58% of the total surface heat flow. This indicates that more than half of the surface heat flow in this area is derived from the mantle. The temperature of the upper mantle is about 602-636 ℃. The Jiyang depression is characterized by a relatively high mantle heat flow value and a high ratio of mantle to surface heat flow. This thermal regime between tectonically active and stable areas is unique in comparison to any other basin in the world.
-
Key words:
- Jiyang depression /
- heat production rate /
- mantle heat flow /
- crustal structure model
-
图 3 世界不同地区的地温随深度的变化(据陆克政等, 1997修改)
Fig. 3. Change of ground temperature along with depth, compared with different parts of the world
表 1 济阳坳陷地震波速①
Table 1. Seismic velocity of Jiyang depression
表 2 济阳坳陷沉积盖层的放射性生热率
Table 2. Radiogenic heat production rate of sedimentary mantle in Jiyang depression
表 3 济阳坳陷各岩层平均生热率
Table 3. Average radiogenic heat production rates for different rock strata of Jiyang depression
表 4 济阳坳陷各层段热流计算结果
Table 4. Heat flow values of different rock strata in Jiyang depression
表 5 济阳坳陷地壳的深部温度和地温梯度计算结果
Table 5. Values of deep crustal temperature and geotemperature gradient in Jiyang depression
表 6 渤海湾盆地各构造单元地壳各层段热流值
Table 6. Heat flow values of different rock strata of Bohai Bay basin
-
[1] Birch, F., Roy, R. F., Decker, E. R., 1968. Heat flow and thermal history in New York and new England. In: Zen, E., White, W. S., Hadley, J. B., et al., eds., Studies of Appalachian geology: Northern and maritime. Interscience, New York, 437-451. [2] Birch, F., 1954. Heat flow radioactivity. In: Nuclear geology. John Wiley & Son, New York, 148-175. [3] Chen, M. X., 1988. Geothermics of North China. Science Press, Beijing, 200-211(in Chinese). [4] Chi, Q. H., Yan, M. C., 1998. Radioactive elements of rocks in North China platform and the thermal structure and temperature distribution of the modern continental lithosphere. Chinese J. Geophys., 41(1): 38-48(in Chinese with English abstract). [5] Correia, A. E., 1999. Cramalho one-dimensional thermal models constrained by seismic velocities and surface radiogenic heat production for two main geotectonic units in southern Portugal. Tectonophysics, 306: 261-268. doi: 10.1016/S0040-1951(99)00059-1 [6] Decker, E. R., Heasler, H. P., Buelow, K. L., et al., 1988. Significance of past and recent heat-flow and radioactivity studies in the southern Rocky Mountains region. Geol. Soc. Am. Bull. , 100(12): 1851-1885. doi: 10.1130/0016-7606(1988)100<1851:SOPARH>2.3.CO;2 [7] Demetrescu, C., Andreescu, M., 1994. On the thermal regime of some tectonic units in a continental collision environment in Romania. Tectonophysics, 230: 265-276. doi: 10.1016/0040-1951(94)90140-6 [8] Gao, S., Zhang, B. R., 1993. Rock radioactivity to the thermal structure and thermal state features of the lithosphere in Qinling orogenic zone and adjacent area. Geochimica, (3): 241-245(in Chinese with English abstract). [9] Gong, Y. L., Wang, L. S., Liu, S. W., et al., 2003. Distribution characteristics of terrestrial heat flow density of Jiyang depression of Shengli oilfield, East China. Science in China (Series D), 33(4): 384-391(in Chinese). [10] Guo, S. P., 1994. Studies on the thermal evolution history and its relationship with hydrocarbon generation of Dongying depression, Shengli oilField: [Dissertation]. Nanjing University, Nanjing, 46-90(in Chinese). [11] Hu, S. B., Zhang, R. Y., Luo, Y. H., et al., 2000. Basin thermal history and petroleum potential in Bohai Sea. China Offshore Oil and Gas(Geology), 14(5): 306-314(in Chinese with English abstract). [12] Li, S. L., 1996. Radioactive element and the thermal structure of the lithosphere and the distribution of temperature in the profiles of Manzhouli-Suifen River geotraverse, China. Geology Geochemistry, 2: 73-78(in Chinese with English abstract). [13] Lu, K. Z., Qi, J. F., Dai, J. S., et al., 1997. The tectonic model of Bohai Bay Cenozoic oil and gas basin. Geological Publishing House, Beijing, 46-86(in Chinese). [14] Morgan, P., 1984. The thermal structure and thermal evolution of the continental lithosphere. In: Physics and chemistry of the earth. Pergamon Press, 15: 174-184. [15] Rimi, A., 1999. Mantle heat flow and geotherms for the main geologic domains in Morocco. Int. Journ. Earth Sciences, 88: 458-466. doi: 10.1007/s005310050278 [16] Rudnick, R. L., McDonough, W. F., O'Connell, R. J., 1998. Thermal structure, thickness and composition of continental lithosphere. Chemical Geology, 145: 395-411. doi: 10.1016/S0009-2541(97)00151-4 [17] Sass, J. H., Blackwell, D. D., Chapman, D. S., et al., 1981. Heat flow from the crust of the United States. In: Physical properties of rocks and minerals. McGrew-Hill Book Company, New York, 503-548. [18] Wang, J. A., Wang, Y. L., 1986. Geothermal and paleogeothermal characteristics of Liaohe graben district and their relationship to JP2oil-gas resources. Acta Petroleum Sinica, 7 (2): 21-29(in Chinese with English abstract). [19] Wang, J. Y., Wang, J. A., 1986. Mantle heat flow of Liaohe rifted basin in North China. Chinese J. Geophys. , 29(5): 450-459(in Chinese with English abstract). [20] Wang, L. S., Liu, S. W., Xiao, W. Y., et al., 2002. The distribution feature of terrestrial heat flow density of Bohai basin. Chinese Science Bulletin, 47(2): 151-155(in Chinese). doi: 10.1360/csb2002-47-2-151 [21] Wang, L. S., Shi, Y. S., 1989. Geothermal study on the oil and gas basin. Nanjing University Press, Nanjing, 33-42(in Chinese). [22] Xiao, W. Y., 2000. A study on the geothermal field in Bohai basin(Dissertation). Nanjing University, Nanjing, 37-46 (in Chinese). [23] Zong, G. H., Xiao, H. Q., Shi, Y. S., et al., 1999. Evolution of Jiyang depression and its tectonic implications. Geological Journal of China Universities, 5(3): 275-282(in Chinese with English abstract). [24] 陈墨香, 1988. 华北地热. 北京: 科学出版社, 200-211. [25] 迟清华, 鄢明才, 1998. 华北地台岩石放射性元素与现代大陆岩石圈热结构和温度分布. 地球物理学报, 41(1): 39-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX199801004.htm [26] 高山, 张本仁, 1993. 秦岭造山带及其邻区岩石的放射性与岩石圈热结构和热状态. 地球化学, (3): 241-245. doi: 10.3321/j.issn:0379-1726.1993.03.005 [27] 龚育龄, 王良书, 刘绍文, 等, 2003. 济阳坳陷大地热流分布特征. 中国科学(D辑), 33(4): 384-391. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200304010.htm [28] 郭随平, 1994. 胜利油区东营凹陷热演化史研究及其与油气生成的关系(博士学位论文). 南京: 南京大学, 46-90. [29] 胡圣标, 张容燕, 罗毓晖, 等, 2000. 渤海海域盆地热历史及油气资源潜力. 中国海上油气(地质), 14(5): 306-314. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200005002.htm [30] 李双林, 1996. 中国满洲里-绥芬河地学断面放射性元素与岩石圈热结构及温度分布. 地质地球化学, 2: 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199602014.htm [31] 陆克政, 漆家福, 戴俊生, 等, 1997. 渤海湾新生代含油气盆地构造模式. 北京: 地质出版社, 46-86. [32] 汪缉安, 王永玲, 1986. 辽河断陷地温、古地温特征与油气资源. 石油学报, 7(2): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB198602004.htm [33] 汪集旸, 汪缉安, 1986. 辽河裂谷盆地地幔热流. 地球物理学报, 29(5): 450-459. doi: 10.3321/j.issn:0001-5733.1986.05.004 [34] 王良书, 刘绍文, 肖卫勇, 等, 2002. 渤海盆地大地热流分布特征. 科学通报, 47(2): 151-155. doi: 10.3321/j.issn:0023-074X.2002.02.017 [35] 王良书, 施央申, 1989. 油气盆地地热研究. 南京: 南京大学出版社, 33-42. [36] 肖卫勇, 2000. 渤海盆地地热场研究(硕士学位论文). 南京: 南京大学, 37-46. [37] 宗国洪, 肖焕钦, 施央申, 等, 1999. 济阳坳陷构造演化及其大地构造意义. 高校地质学报, 5(3): 275-282. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX199903004.htm