Application of Fourier Transform Infrared (FTIR) Spectroscopy in Quantitative Mineralogy of the South China Sea: Example of Core MD01-2393
-
摘要: 傅里叶变换红外光谱(FTIR)方法以其测量多种矿物绝对含量的能力在古环境研究中有很大的优势.运用FTIR方法分析了南海南部湄公河口MD01-2393孔的矿物成分含量, 对比运用X射线衍射(XRD)的半定量分析方法, 研究了青藏高原东部和湄公河盆地晚第四纪190 ka以来风化剥蚀演化历史.结果显示, 全岩高岭石/石英和粘土粒级(< 2μm)高岭石/蒙脱石比率可用作陆源区风化侵蚀的矿物学标志.晚第四纪190 ka以来, 青藏高原东部和湄公河盆地机械侵蚀作用在冰期比间冰期强, 化学风化作用在间冰期比冰期强, 揭示出亚洲季风气候驱动的风化剥蚀演化历史.全新世期间, 虽然全岩高岭石/石英与粘土粒级(< 2μm)蒙脱石/高岭石比率指示相同趋势的风化剥蚀作用, 但全岩高岭石/石英比率显示更强的机械侵蚀能力, 这可能是受湄公河口海平面快速变化的影响.
-
关键词:
- 粘土矿物 /
- 傅里叶变换红外光谱(FTIR) /
- 晚第四纪 /
- 湄公河 /
- 南海
Abstract: The Fourier transform infrared(FTIR)spectroscopy has a large advantage in paleoenvironmental study, through its measurement of various minerals in absolute proportions. This paper reports the mineral contents of Core MD01-2393, located off the Mekong River estuary in the southern South China Sea, using the FTIR method.Along with a comparison of semiquantitative determination by the X-ray diffraction(XRD)method, we present a reconstruction of the erosion and weathering history of the eastern Tibetan plateau and the Mekong basin since 190 ka in the late Quaternary. The results indicate that the bulk kaolinite/quartz ratio and clay-sized(< 2μm)kaolinite/smectites ratio may serve as mineralogical proxies of erosion and weathering occurrence in source areas. Since 190 ka in the eastern Tibetan plateau and the Mekong basin, the mechanical erosion has been stronger in glacials than in interglacials, while the chemical weathering is stronger in interglacials than in glacials, implying an Asian monsoon-controlled erosion and weathering history. During the Holocene, although both the bulk kaolinite/quartz ratio and clay-sized (< 2μm)smectites/kaolinite ratio indicate a similar evolution process of erosion and weathering, the bulk kaolinite/quartz ratio presents a stronger mechanical erosion ability. This phenomenon could be affected by rapid sea-level changes in the Mekong River estuary.-
Key words:
- clay mineral /
- Fourier transform infrared (FTIR) /
- late Quaternary /
- Mekong River /
- South China Sea
-
图 1 青藏高原东部和湄公河盆地地质简图(Liu et al., 2004)
Fig. 1. Schematic geological map of the eastern Tibetan plateau and the Mekong River basin
图 3 MD01-2393孔190 ka以来全岩高岭石和石英含量、粘土粒级(< 2 μm) 蒙脱石和高岭石组合、全岩高岭石/石英和高岭石/蒙脱石(< 2 μm) 比率以及浮游有孔虫氧同位素δ18O曲线
MIS为氧同位素期; 粘土粒级(< 2 μm) 蒙脱石和高岭石数据、浮游有孔虫氧同位素数据来源于Liu et al. (2004)
Fig. 3. Comparison of bulk kaolinite and quartz contents, clay-sized (< 2 μm) smectites and kaolinite proportions, bulk kaolinite/quartz ratio, clay-sized (< 2 μm) kaolinite/smectites ratio, and planktonic foraminiferaδ18O record
-
[1] Bertaux, J., Fr9 hlich, F., Ildefonse, P., 1998. Multicomponent analysis of FTIR spectra: Quantification of amorphous and crystallized mineral phases in synthetic and natural sediments. Journal ofSedimentary Research, 68: 440-447. doi: 10.2110/jsr.68.440 [2] Bǜhring, C., Sarnthein, M., Leg 184 Shipboard Scientific Party, 2000. Toba ash layers in the South China Sea: Evidence of contrasting wind directions during eruption ca. 74 ka. Geology, 28: 275-278. [3] Colin, C., Turpin, L., Bertaux, J., et al., 1999. Erosional history of the Himalayan and Burman ranges during the last two glacial-interglacial cycles. Earth and Planetary Science Letters, 171: 647-660. doi: 10.1016/S0012-821X(99)00184-3 [4] Dean, W.E., 1993. Physical properties, mineralogy, and geochemistry of Holocene varved sediments from Elk Lake, Minnesota. In: Bradbury, J.P., Dean, W.E., eds., Elk Lake, Minnesota: Evidence for rapid climate change in the North-Central United States. Geological Society ofAmerica Special Paper, 276: 135-157. [5] Holtzapffel, T., 1985. Les minéraux argileux: Préparation, analyse deffrctométrique et determination. SociétéGéologique du Nord Publication, 12: 1-136. [6] Liu, Z.F., Colin, C., Trentesaux, A., et al., 2004. Clay mineral records of East Asian monsoon evolution during late Quaternary in the southern South China Sea. Science in China (Series D), 34(3): 272-279(in Chinese). [7] Liu, Z., Colin, C., Trentesaux, A., et al., 2004. Erosional history of the eastern Tibetan plateau since 190 kyr ago: Clay mineralogical and geochemical investigations from the southwestern South China Sea. Marine Geology, 209: 118. [8] Martinson, D.G., Pisias, N.G., Hays, J.D., et al., 1987. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 3 000 000 year chronostratigraphy. Quaternary Research, 27: 1-29. doi: 10.1016/0033-5894(87)90046-9 [9] Pichard, C., Fr9 hlich, F., 1986. Analyses IR quantitatives des sédiments: Exemple du cosage du quartz et de la calcite. Revue Institut Franais du Pétrole, 41: 809-819. doi: 10.2516/ogst:1986048 [10] Ta, T.K.O., Nguyen, V. L., Tatcishi, M., et al., 2002. Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam. Quaternary Science Reviews, 21: 1807-1819. doi: 10.1016/S0277-3791(02)00007-0 [11] Thompson, P.R., Bé, A.W.H., Duplessy, J.C., et al., 1979. Disappearance of pink-pigmented Globigerinoides ruber at 120 000 yr B. P. in the Indian and Pacific Oceans. Nature, 280: 554-558. [12] Wilson, M.J., 1987. A handbook of determinative methods in clay mineralogy. Blackie, Glasgov and London, 1-308. [13] 刘志飞, Colin, C., Trentesaux, A., 等, 2004. 南海南部晚第四纪东亚季风演化的粘土矿物记录. 中国科学(D辑), 34(3): 272-279. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200403008.htm