Method of Evaluating Vertical Sealing of Faults in Terms of the Internal Structure of Fault Zones
-
摘要: 脆性断层和塑性断层断裂带内部结构存在差异: 脆性断层断裂带由以断层岩和伴生裂缝为特征的破碎带和诱导裂缝带2部分组成; 塑性断层断裂带表现为几条充填断层泥大裂缝的组合, 诱导裂缝带不发育.破碎带内部伴生裂缝、无粘结力断层岩带和诱导裂缝带都可能成为油气运移的通道, 只有这3种通道均封闭, 脆性断层垂向才是封闭的.只要伴生裂缝封闭, 塑性断层就是封闭的.基于这种封闭机理, 分析了3种通道封闭的条件: 无粘结力断层岩带是否封闭取决于断层泥含量大小; 破碎带内部伴生裂缝的封闭性取决于断面压力和断层泥塑性强度关系; 诱导裂缝带封闭程度受控于后期成岩充填的程度.提出了利用断面压力、断层泥的含量和塑性强度、后期成岩程度综合判定不同性质断层垂向封闭性评价方法.并利用该方法对克拉2构造F1断层垂向封闭性进行了评价, 结果表明F1断层垂向封闭性具有分段性: ①和③段均表现为脆性, 但①段因诱导裂缝没有被充填不封闭, ③段是封闭的; ②段是塑性断层, 垂向封闭性好.这是克拉2构造有大规模天然气聚集成藏的关键因素之一.Abstract: There is an internal structural discrepancy between plastic faults and fragile faults: a fragile fault zone consists of a crushed zone and an induced fracture zone characterized by fault rock and associated fractures; a plastic fault zone consists of several big fractures filling the fault gouge without an induced fracture zone. Associated fractures inside a crushed zone, a fault rock zone without adhesive power and induced fracture zones may all allow petroleum migration. So a fragile faultis vertically sealed only when all three migration pathways are sealed. When the associated fractures are sealed, the plastic fault is also sealed. Based on the seal mechanism, the sealing conditions of the three migration pathways are analyzed in this paper: the seal on a fault rock zone without adhesive power is dependant on the content of fault mud; the seal of an associated fracture inside a crushed zone is dependant on the relationship between the section pressure and fragile strength of the fault gouge; the seal quality of an induced fracture zone is controlled by the quantity of later rock-forming fill. This paper presents a method forevaluating the vertical seal of disparate faults using the section pressure, content and plastic strength of fault gouge and the quantity of later rock-forming fill. For example, the vertical seal of the F1 fault of Kela 2 structure in Kuqa depression was evaluated according to this method. The results indicate that vertical seal on the F1 fault had the following properties: section ① and section ③ show fragility, but section① is not sealed, as a result of an induced fracture that was not filled; section ③ is sealed; section ② is a plastic fault with a good vertical seal. This is one of the key reasons that natural gas gathered on a large scale and formed a field in Kela 2 stucture.
-
Key words:
- fault zone /
- internal structure /
- vertical seal /
- evaluation method
-
图 2 脆性破裂机制与脆性剪切带的内部构造(林爱明, 1996)
Fig. 2. Mechanism of brittle deformation and internal fabrics of brittle shear zone
图 4 断裂带不同分带透水性实验曲线(据熊永旭等(1978)数据改编)
Fig. 4. Test curve of water vapor permeability in different structures in fault zone
表 1 不同粒度石英砂实验室条件下模拟断裂带填充物封闭油和天然气所需泥质含量理论下限值
Table 1. Minimum mudstone content in fault zone required in sealing oil and gas under experiment condition of different granularity quartzs
-
[1] Antonellini, M., Aydin, A., 1994. Effect of faulting flow on porous sandstones: Petrophysical properties. AAPG Bulletin, 78: 355-377. [2] Chen, F.J., Tian, S.C., 1989. Compaction and oil or gas migration. China University of Geosciences Press, Wuhan, 156-160(in Chinese). [3] Dewney, M.W., 1984. Evaluating seals for hydrocarbon accumulations. AAPG Bulletin, 68: 1752-1763. [4] Fu, G., Yang, M., 2002. Improved method for studing fault closer by using shale content in fault filling materials. Journal of Jianghan Petroleum Institute, 24(1): 1-4 (in Chinese with English abstract). [5] Fu, X. F., Fu, G., Zhao, P. W., 1999. Study on fault seal mechanism and main influencing factor. Natural Gas Geoscience, 10(3-4): 54-62(in Chinese with English abstract). [6] Fu, X.F., Lü, Y.F., Fu, G., et al., 2004. Quantitative simulation experiment and evaluation method for vertical seal of overthrust. Chinese Journal of Geology, 39(2): 223-233(in Chinese with English abstract). [7] Harding, T.P., Tuminas, A.C., 1989. Structural interpretation of hydrocarbon traps sealed by basement normal blocks and at stable flank of foredeep basin and at rift basin. AAPG Bulletin, 73: 812-840. [8] Jiao, D.Q., Liang, Z.G., Wang, C.Q., et al., 1998. Studying on fluid evolution in oil and gas basin. Petroleum Industry Press, Beijing, 107-119(in Chinese). [9] Kinpe, R. J., Jone, G., Fisher, Q. J., 1998. Faulting, fault sealing and fluid folw in hydrocarbon reservoirs: An introduction. In: Jone, G., Fisher, Q. J., Kinpe, R. J., eds., Faulting, fault sesling and fluid flow in hydrocarbon reservoirs. Geological Society Special Publication (147). Elsevier, London, 7-21. [10] Lin, A.M., 1996, Fault rock and faulting model. Geological Journal of China Universities, 2(3): 295-306(in Chinese with English abstract). [11] Liu, Z.R., Xin, Q.L., Deng, J.G., 1998. Formation mechanism of oil or gas reservoirs and structural models in fault block group. Petroleum Industry Press, Beijing, 108-115(in Chinese). [12] Lü, Y.F., Fu, G., Gao, D.L., 1996. Study on oil and gas reservoirs sealing and caprock. Petroleum Industry Press, Beijing, 118-120(in Chinese). [13] Nelson, 1985. Geologic analysis of naturally fractured reservoirs. Gulf Publishing Company, Houston, 12-17. [14] Shao, S.M., 1994. Present condition and progress of fault gouge research. Earthquake Research in Plateau, 6(3): 51-56(in Chinese). [15] Sibson, R. H., 1977. Fault mechanisms. Geol. Soc. Lond. , 133: 191-213. doi: 10.1144/gsjgs.133.3.0191 [16] Tong, H. M., 1998. Quantitative analysis of fault opening and sealing. Oil and Gas Geology, 19(3): 215-220(in Chinese with English abstract). [17] Wang, Z. Y., 2002. Physical and mechanical properties of Mesozoic and Cenozoic rocks in the west of Kuqa depression in Tarim basin. Progress in Geophysics, 17(3): 399-405(in Chinese with English abstract). [18] Wu, H. L., Zhang, L. R., 2002. The elastic-plastic region around faults and its geological significance. Acta Geoscientia Sinica, 23(1): 11-16(in Chinese with English abstract). [19] Xiong, Y.X., Xian, R.Y., Dong, X.F., 1978. Discussing on the relation between fracture plane and oil and gas permeability. In: Petroleum geology transaction. Geological Publishing House, Beijing, 164-168(in Chinese). [20] Yan, F.L., Jia, D., Lu, H.F., et al., 1999. Seismic pumping mechanism of hydrocarbon migration in Dongying depression. Oil and Gas Geology, 20(4): 295-298(in Chinese with English abstract). [21] Yang, M.H., Jin, Z.J., Lü, X.X., et al., 2002. Kelasu triangle zone and its hydrocarbon potential in Kuqa thrust and fold belts Tarim basin. Earth Science— Journal of China University of Geosciences China University of Geosciences, 27(6): 745-750. [22] Zhang, Y.G., 1991. The formation, migration and preservation of natural gas. Hohai University Press, Nanjing, 138-142(in Chinese). [23] Zhang, M.L., Tan, C.X., Tang, L.J., et al., 2004. An analysis on mechanical genesis of overpressure at Kala 2 gas pool in Kuqa down-warping region. Earth Science—Journal of China University of Geosciences, 29(1): 93-102(in Chinese with English abstract). [24] Zhao, M.F., Xin, Q.L., Li, Y.H., et al., 2001. Progress in study on fault sealing. Xinjiang Petroleum Geology, 22(3): 258-261(in Chinese with English abstract). [25] Zhou, X. G., Deng, H. W., Cao, C. J., et al., 2003. The methods for quantitative prediction and evaluation of structural fissures in reservoirs. Acta Geoscientia Sinica, 24(2): 175-180(in Chinese with English abstract). [26] Zhou, X.G., Sun, B.S., Tan, C.X., et al., 2000. State of current geostress and effect of fault sealing. Petroleum Exploration and Development, 27(5): 127-131(in Chinese with English abstract). [27] 嶋本利彦, 1988. マイロ ナイト の起源と新しい断层モ デ ル. 月刊地球, 10: 133-134. https://cdmd.cnki.com.cn/Article/CDMD-10724-1015960690.htm [28] 陈发景, 田世澄, 1989. 压实与油气运移. 武汉: 中国地质大学出版社, 156-160. [29] 付广, 杨勉, 2002. 利用断裂填充物中泥质含量研究断层封闭性的改进方法. 江汉石油学院学报, 24(1): 1-4. doi: 10.3969/j.issn.1000-9752.2002.01.001 [30] 付晓飞, 付广, 赵平伟, 1999. 断层封闭机理及主要影响因素研究. 天然气地球科学, 10(3-4): 54-62. doi: 10.11764/j.issn.1672-1926.1999.03.54 [31] 付晓飞, 吕延防, 付广, 等, 2004. 逆掩断层垂向封闭性定量模拟实验及评价方法. 地质科学, 39(2): 223-233. doi: 10.3321/j.issn:0563-5020.2004.02.009 [32] 焦大庆, 梁志刚, 王长青, 等, 1998. 含油气盆地流体演化研究. 北京: 石油工业出版社, 107-119. [33] 林爱明, 1996. 断层岩与断层模式. 高校地质学报, 2(3): 295-306. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX603.004.htm [34] 刘泽容, 信荃麟, 邓俊国, 1998. 断块群油气藏形成机制和构造模式. 北京: 石油工业出版社, 16-23. [35] 吕延防, 付广, 高大岭, 1996. 油气藏封盖研究. 北京: 石油工业出版社, 118-120. [36] 邵顺妹, 1994. 断层泥研究的现状和进展. 高原地震, 6(3): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDZ403.006.htm [37] 童亨茂, 1998. 断层开启与封闭的定量分析. 石油与天然气地质, 19(3): 215-220. doi: 10.3321/j.issn:0253-9985.1998.03.008 [38] 王子煜, 2002. 库车坳陷西部中新生代地层岩石物理和力学性质. 地球物理学进展, 17(3): 399-405. doi: 10.3969/j.issn.1004-2903.2002.03.006 [39] 武红岭, 张利容, 2002. 断层周围的弹塑性区及其地质意义. 地球学报, 23(1): 11-16. doi: 10.3321/j.issn:1006-3021.2002.01.003 [40] 熊永旭, 先容有, 董秀芳, 1978. 破裂面性质与油气渗滤关系探讨. 石油地质论文集(构造3). 北京: 地质出版社, 164-168. [41] 阎福礼, 贾东, 卢华复, 等, 1999. 东营凹陷油气运移的地震泵作用. 石油与天然气地质, 20(4): 295-298. doi: 10.3321/j.issn:0253-9985.1999.04.005 [42] 杨明慧, 金之钧, 吕修祥, 等, 2002. 库车褶皱冲断带克拉苏三角带及其油气潜力. 地球科学———中国地质大学学报, 27(6): 745-750. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200206016.htm [43] 张义纲, 1991. 天然气的生成、运移和保存. 南京: 河海大学出版社, 138-148. [44] 张明利, 谭成轩, 汤良杰, 等, 2004. 库车坳陷克拉2气藏异常高地层压力成因力学分析. 地球科学———中国地质大学学报, 29(1): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401016.htm [45] 赵密福, 信荃麟, 李亚辉, 等, 2001. 断层封闭性的研究进展. 新疆石油地质, 22(3): 258-261. doi: 10.3969/j.issn.1001-3873.2001.03.025 [46] 周新桂, 邓宏文, 操成杰, 等, 2003. 储层构造裂缝定量预测研究及评价方法. 地球学报, 24(2): 175-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200302015.htm [47] 周新桂, 孙宝珊, 谭成轩, 等, 2000. 现今地应力与断层封闭效应. 石油勘探与开发, 27(5): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200005038.htm