Middle Devonian Picrites of South Margin of Altay Orogenic Belt and Implications for Tectonic Setting and Petrogenesis
-
摘要: 阿尔泰造山带南缘中泥盆世苦橄岩位于北塔山组地层的下部, 其上依次为玄武岩和安山岩.3种岩性共同的特点是贫钛、富铁, 具Nb和Ta的负异常以及高场强元素的丰度与MORB相当, 具有典型的岛弧火山岩系的特点, 是准噶尔洋板块向南西俯冲的结果.苦橄岩和玄武岩的Zr/Nb和Sm/Nd比值与MORB相当, 表明其源区为亏损的MORB源.然而玄武岩的Ti/V和Zr/Sm比值均高于苦橄岩, 而且玄武岩的稀土元素配分曲线呈平缓型, 而苦橄岩则显示出低的稀土总量以及弱富集轻稀土型, 指示了玄武岩是被从俯冲的洋壳释放的流体交代的含角闪石的尖晶石橄榄岩的地幔源区低程度部分熔融形成的, 苦橄岩则是在高温条件下被流体交代过的石榴石橄榄岩高程度熔融的产物.安山岩则可能是榴辉岩部分熔融形成的.Abstract: Middle Devonian picrites of the south margin of Altay orogenic belt occur in the lower part of the Beitashan Fm., overlain by basalts and andesite. They are characterized by a depletion of Ti and enrichment of Fe, negative anomalies of Nb and Ta with abundance of HFSE as MORB, exhibiting typical island arc magmas. They may result from the southwestward subduction of the Junggar ocean plate. The Zr/Nb ratios of the picrites and basalts resemble the MORB, suggesting MORB-like sources. However, Ti/V and Zr/Sm ratios are higher than those of picrites, and the basalts display flat-type REE-chondrite patterns whereas the picrites are characterized by lower total REE concentrations and a slight enrichment of light REE. All suggest that the basalts were generated by lower partial melting of amphibole-bearing spinel peridotite, which was metasomatized by fluids released from the subducted oceanic crust, and the picrites resulted from the higher degree of partial melting of metasomatized garnet peridotite under high temperatures. The andesite may have resulted from the partial melting of eclogites.
-
Key words:
- picrite /
- geochemistry /
- island arc /
- Middle Devonian /
- Altay orogenic belt.
-
图 3 FeO*/MgO-SiO2图解(据Miyashiro, 1974)
Fig. 3. Diagram of FeO*/MgO vs. SiO2
图 4 北塔山组火山岩稀土元素球粒陨石配分(a) 和微量元素MORB标准化(b) 曲线(数据据Sun and McDonoug, 1989)
Fig. 4. REE chondrite-normalized patterns (a) and trace element MORB-normalized patterns (b) of the volcanic rocks of the Beitashan Formation
图 5 北塔山组火山岩Nb/Yb-Zr/Yb图解(底图据Pearce and Parkinson, 1993)
Fig. 5. Plot of Nb/Yb against Zr/Yb for the volcanic rocks of the Beitashan Formation
表 1 北塔山组火山岩主要元素和微量元素分析结果
Table 1. Major and minor element analyses of the volcanic rocks of the Beitashan Formation
表 2 北塔山组火山岩不相容元素某些特征比值参数
Table 2. Some incompatible element ratios of the volcanic rocks of the Beitashan Formation
-
[1] Anderson, D.L., 1994. Komattites and picrites: Evidence that "plume" source is depleted. Earth Planet. Sci. Lett. , 128: 303-311. doi: 10.1016/0012-821X(94)90152-X [2] Davidson, J.P., 1996. Deciphering mantle and crustal signatures in subduction zone magmatism. Subduction top to bottom. Geophys. Monogr., 96, Amercian Geophysical Union, Washington DC, 251-262. [3] Green, D.H., Falloon, T., Eggins, S.M., et al., 2001. Primary magmas and mantle temperatures. European Journal of Mineralogy, 13: 37-451. [4] Han, B.F., 1991. The Middle Devonian bimodal association of volcanic rocks in the northern area of east Junggar, Xinjiang. Acta Geologica Sinica, 65: 317-326(in Chinese with English abstract). [5] Hawakesworth, C. J., Gallagher, K., Hergt, J.M., et al., 1993. Mantle and slab contributions in arc magmas. Annu. Rev. Earth Planet. Sci. Lett. , 21: 175-204. doi: 10.1146/annurev.ea.21.050193.001135 [6] Hawakesworth, C. J., Turner, S., McDermott, F., et al., 1997. U-Th isotopes in arc magmas for element transfer from the subducted crust. Science, 276: 551-555. doi: 10.1126/science.276.5312.551 [7] He, G.Q., Li, M.S., Liu, D.Q., et al., 1994. Paleozoic crust and its evolution of Xinjiang, China. Xinjiang People's Press, Wulumuqi(in Chinese). [8] Le Bas, M. J., 2000. IUGS reclassification of the high-Mg and picritic volcanic rocks. J. Petrol. , 41(10): 1467-1470. doi: 10.1093/petrology/41.10.1467 [9] Li, J.Y., 1991. On evolution of Paleozoic plate tectonics of east Junggar, Xinjiang, China. In: Xiao, X.C., Tang, Y. Q., eds., Tectonic evolution of the southern margin of the paleo-Asian composite megasuture. Beijing Scientific and Technical Publishing House, Beijing, 92-108(in Chinese with English abstract). [10] Li, J.Y., Xu, X., 2004. Major problems on geologic structures and metanogenesis of northern Xinjiang, Northwest China. Xinjiang Geology, 22(2): 119-124(in Chinese with English abstract). [11] Macdonald, R., Hawkesworth, C.J., Heath, E., 2000. The Lesser Antilles volcanic chain: A study in arc magmatism. Earth Sci. Rev. , 49: 1-76. doi: 10.1016/S0012-8252(99)00069-0 [12] McCulloch, M.T., Gamble, J.A., 1991. Geochemical and geodynamic constraints on subduction zone magmatism. Earth Planet. Sci. Lett. , 102: 358-374. doi: 10.1016/0012-821X(91)90029-H [13] Miller, D.M., Goldstein, S.L., Langmuir, C.H., 1995. Cerium/lead and lead isotope ratios in arc magmas and the enrichment in lead of the contents. Nature, 368: 514-520. [14] Miyashiro, A., 1974. Volcanic rock series in island arcs and active continental margins. Am. J. Sci. , 274: 321-355. doi: 10.2475/ajs.274.4.321 [15] Morris, J.D., Leeman, W.P., Tera, F., 1990. The subducted component in island arc lavas: Constraints from Be isotope and B-Be systematics. Nature, 344: 31-36. doi: 10.1038/344031a0 [16] Pearce, J.A., Parkinson, I.J., 1993. Trace-element models for mantle melting: Application to volcanic arc petrogenesis. Geo. Soc. London, Spec. Publ. , 76: 373-403. doi: 10.1144/GSL.SP.1993.076.01.19 [17] Pearce, J. A., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. Lett. , 76: 373-403. [18] Plank, T., Langmuir, C. H., 1993. Tracing trace-elements from sediment input to volcanic output at subduction zones. Nature, 362: 739-743. doi: 10.1038/362739a0 [19] Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. , 145: 325-394. doi: 10.1016/S0009-2541(97)00150-2 [20] Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial melting of amphibolite/ecolgite and the origin of Archean trondhjemites and tonalities. Precambrian Res. , 51: 1-25. doi: 10.1016/0301-9268(91)90092-O [21] Rea, D.K., Ruff, L.J., 1996. Composition and mass flux of sediment entering the world's subduction zones: Implications for global sediment budgets, great earthquakes and volcanism. Earth Planet. Sci. Lett. , 140: 1-12. doi: 10.1016/0012-821X(96)00036-2 [22] Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the ocean basins. Geological Society London, Special Publication, 42: 313-345. [23] Thirlwall, M.F., Smith, T.E., Graham, A.M., et al., 1994. High field strangth element anomalies in arc lavas: Source or process? J. Petrol. , 35: 819-838. doi: 10.1093/petrology/35.3.819 [24] Wang, D.H., Chen, Y.C., Xu, Z.G., et al., 2002. Metallogenic series and regularities in Altay metallogenic province. Atomic Energy Press, Beijing, 493(in Chinese). [25] Wang, J.B., Zhang, J.H., Ding, R.F., et al., 2000. Tectonic-metallogenic system in the Altay orogenic belt, China. Acta Geologica Sinica, 74(3): 485-491. [26] Wei, G.Y., Ni, Z.Y., 1990. Preliminary study of the rift volcanic rocks of the Irtysh volcanic area, Xinjiang. J. Mineral. Petrol. , 10(3): 15-23(in Chinese with English abstract). [27] Wilson, M., 1989. Igneous Petrogenesis. London Unwin Hyman, London. [28] Xu, J.F., Mei, H.J., Yu, X.Y., et al., 2001. Adakites related to subduction in the northern margin of Junggar arc for the Late Paleozoic: Products of slab melting. Chinese Science Bulletin, 46: 684-688(in Chinese). doi: 10.1360/csb2001-46-8-684 [29] Yang, W.P., Zhou, G., Zhang, Z.C., et al., 2005. Discovery of the Xileketehalsu porphyry copper deposit in the south margin of the Altay metallogenic belt. Geology in China, 32(1): 107-114(in Chinese with English abstract). [30] Ye, Q.T., Fu, X.J., Wang, B.L., 1998. Metallogeny of polymetallic belts on the sourthern margin of the Altay mountains, Xinjiang, China. Acta Geologica Sinica, 72 (4): 349-357(in Chinese with English abstract). [31] Yu, X. Y., Mei, H.J., Yang, X.C., et al., 1993. Volcanic rocks and tectonic evolution of the Irytish region. In: Tu, G.C., ed., New progress of solid earth sciences of the northern Xinjiang. Science Press, Beijing, 185-198(in Chinese). [32] Zhang, Z.C., Hao, Y.L., Wang, F.S., 2003. Picrites in large igneous province and implications. Earth Science Frontiers, 10(3): 347-358(in Chinese with English abstract). [33] 何国琦, 李茂松, 刘德权, 等, 1994. 中国新疆古生代地壳及演化. 乌鲁木齐: 新疆人民出版社. [34] 韩宝福, 1991. 新疆东准噶尔北部中泥盆世双峰式火山岩组合. 地质学报, 65 (4): 317-328. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199104001.htm [35] 李锦轶, 1991. 试论中国新疆准噶尔山系古生代板块构造演化. 见: 肖序常, 汤耀庆编, 古中亚复合巨型缝合带南缘构造演化. 北京: 北京科学技术出版社, 92-108. [36] 李锦轶, 徐新, 2004. 新疆北部地区构造和成矿作用的主要问题. 新疆地质, 22 (2): 119-124. doi: 10.3969/j.issn.1000-8845.2004.02.001 [37] 王登红, 陈毓川, 徐志刚, 等, 2002. 阿尔泰成矿省的成矿系列及成矿规律. 北京: 原子能出版社, 493. [38] 卫管一, 倪志耀, 1990. 新疆额尔齐斯火山岩地区裂谷火山岩的初步研究. 矿物岩石, 10 (3): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS199003002.htm [39] 许继峰, 梅厚钧, 于学元, 等, 2001. 准噶尔北缘晚古生代岛弧中与古俯冲作用有关的adakite火山岩: 消减板片部分熔融的产物. 科学通报, 46: 684-688. doi: 10.3321/j.issn:0023-074X.2001.08.016 [40] 杨文平, 周刚, 张招崇, 等, 2005. 阿尔泰铜矿带南缘希勒克特哈腊苏斑岩铜矿的发现及其意义. 中国地质, 32 (1): 107-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200501014.htm [41] 叶庆同, 傅旭杰, 王宝良, 1998. 新疆阿尔泰山南缘多金属成矿带的成矿规律. 地质学报, 72 (4): 349-357. doi: 10.3321/j.issn:0001-5717.1998.04.006 [42] 于学元, 梅厚钧, 杨学昌, 等, 1993. 额尔齐斯火山岩及构造演化. 见: 涂光炽编, 新疆北部固体地球科学新进展. 北京: 科学出版社, 185-198. [43] 张招崇, 郝艳丽, 王福生, 2003. 大火成岩省中苦橄岩的研究意义. 地学前缘, 10 (3): 347-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303014.htm