14C Dating of Paleosol and Animal Remains in Loess Deposit: A Comparative Study
-
摘要: 精确、可靠测定古土壤和生物化石年代是重建环境变化过程、探讨人地关系的关键.研究古土壤中不同组分年代的异同对于分析土壤中碳附存状态和碳储存库十分重要.对甘肃省榆中县境内兴隆山典型黄土剖面采集的动物化石、土壤无机质、土壤有机质3个样品进行常规14C和AMS测年, 发现同一地层相同点样品不同组分的测年结果相差悬殊, 样品无机质比其有机质年龄(3682±70) a偏老2624a.对其14C测年可靠性对比分析发现, 常规14C和AMS对骨骼和牙齿化石测年相差仅为13a, 校正为日历年后几乎相等, 认为实验室产生的误差很小, 而碳的来源、组成及其“死碳”混入的比例是影响测年结果的主要因素.化石年龄与土壤有机质年龄之间的差别, 揭示该剖面可能存在持续时间达千年以上的沉积间断.由于同一层位骨化石、土壤有机质、土壤无机质14C测年结果差异, 在进行化石年代确定、考古及古文明研究、生态植被恢复、土壤无机碳存储库研究中, 年龄的界定应选择相应的测年数据.
-
关键词:
- 黄土及古土壤 /
- 生物化石 /
- 有机质 /
- 无机质 /
- 常规14C及AMS测年
Abstract: Dating paleosol and animal remains accurately and reliably is of crucial importance in reconstructing environmental change processes and researching the relationship between natural environments and human evolution. Dating different components in the same specimen and differentiating their ages is also important for tackling problems such as carbon storage state and soil carbon sources. Conventional 14C and AMS dating on animal remains (fossil bone and teeth) and inorganic and organic soil matter from a typical loess section at Xinglong Mountain, Yuzhong County, Gansu Province reveal that three different substances in the specimen from the same sampling position possess different 14C ages: the age of inorganic matter is 2 624 years older than that of organic matter, which is dated at (3 682±70) a. According to the reliability analysis of these 14C ages, laboratory error is negligible, but the 14C resources, the component of 14C and the proportion of "dead carbon" are the main factors influencing 14C dating results. It is only possible to date the geological events correctly and reliably by analyzing the reasons generating these differences and the age comparison of different substances may provide information on paleoclimate and paleoenvironment. A 2 000 year difference between the 14C ages of fossil and organic soil matter might indicate that a sediment gap exists, which is very important when reconstructing paleoclimate by loess section. -
图 2 样品胡敏素和胡敏酸提取流程(刘嘉麒等, 1994)
Fig. 2. Humic and humic acid extraction procedures of the specimens
表 1 不同样品(组分)14C测年结果
Table 1. 14C dating result
-
[1] An, C. B., Feng, Z. D., Tang, L. Y., 2004. Environmental change and cultural response between 8 000 and 4 000 cal. yr B. P. in the western Loess Plateau, northwest China. Journal of Quaternary Science, 19 (6): 529-535. doi: 10.1002/jqs.849 [2] Bard, E., 1998. Geochemical and geophysical implications of the radiocarbon calibration. Geochemica et Cosmochemica Acta, 62 (12): 2025-2038. doi: 10.1016/S0016-7037(98)00130-6 [3] Beer, J., Joos, C.F., Lukasczyk, C., et al., 1994.10 Be as an indicator of solar variability and climate. In: Nesme- Ribes, E., ed., The solar engine and its influence on terrestrial atmosphere and climate. Vol. Ⅰ. NATO ASI Springer, Berlin, 221-233. [4] Burr, G.S., Beck, J.W., Taylor, F.W., et al., 1998. A high resolution radiocarbon calibration between 11 700 and 12 400 calendar years B.P. derived from 230Th ages of corals from Espirito Santo island, Vanuatu. Radiocarbon, 40 (3): 1093-1105. doi: 10.1017/S0033822200019147 [5] Chen, W. J., Ji, F. J., Wang, F., 1999. Age dating of young geological systems(sequel)— New method, new advancement. Geological Publishing House, Beijing(in Chinese). [6] Edwards, R. l., Beck, J. W., Burr, G. S., et al., 1998. A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science, 260: 962-967. [7] Geyh, M.A., Skchleicher, H., 1991. Absolute age determinaton. Springer, New York. [8] Frank, M., Schwarz, B., Baumann, S., et al., 1997. A 200 kyr record of cosmogenic radionuclide production rate and geomagnetic field intensity from 10Be in globally stacked deep-sea sediments. Earth and Planetary Science Letters, 149 (1-4): 121-129. doi: 10.1016/S0012-821X(97)00070-8 [9] Guiyang Institute of Geochemistry, Chinese Academy of Sciences, 1977. 14C-age dating methods and their application. Science Press, Beijing(in Chinese). [10] Guo, Z.T., Feidorlofu, N., 1990. Accumulation and corrosion of Caco3 of the loess and paleaosol in the central loess plateau, China. In: Liu, D.S., ed., Loess Quaternary Geology Global Change, 1: 93-97. [11] Levin, I., Graul, R., Trivett, N. B. A., 1995. Long-term ob- servations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus, 47B: 23-24. [12] Liu, J. Q., Chen, T. M., Nie, G. Z., 1994. Datings and reconstruction of the high resolution time series in the Weinan loess section of the last 150 000 years. Quaternary Science, (3): 193-202 (in Chinese with English abstract). [13] Muscheler, R., Beer, J., Wagner, G., et al., 2000. Changes in deep-water formation during the Younger Drayas event inferred from 10Be and 14C records. Nature, 408: 567-570. doi: 10.1038/35046041 [14] Schramm, A., Mordechai, S., Goldstein, S. L., 2000. Calibra- tion of the 14C time scale to> 40 ka by 234U-230Th dating of Lake Lisan sediments(last glacial Dead Sea). Earth and Planetary Science Letters, 175: 27-40. doi: 10.1016/S0012-821X(99)00279-4 [15] Shen, C.D., Yi, W.X., Zhou, W.J., et al., 1990. 14C carbon cycle and global change. In: Liu, D.S., ed., Loess Quaternary Geology Global Change, 2: 27-34(in Chinese). [16] Shi, J. S., Li, Z. H., Wei, M. J., et al., 1998. Loess and paleoclimate change. Geological Publishing House, Beijing (in Chinese). [17] Stuiver, M., Braziunas, T. F., Becker, B., et al., 1991. Climatic, solar, oceanic and geomagnetic influences in lateglacial and Holocene atmospheric 14C/12C change. Quaternary Research, 35: 1-24. doi: 10.1016/0033-5894(91)90091-I [18] Stuiver, M., Reimer, P. J., Bard, E., et al., 1998. Intcal198 radiocarbon age calibration, 24 000 -0 cal a. Radiocarbon, 40 (3): 1041-1083. doi: 10.1017/S0033822200019123 [19] Voelker, A. H. L., Sarnthein, M., Groots, P. M., et al., 1998. Correlation of marine 14C ages from the Nordic seas with the GISP2 isotope record: Implication beyond 25 ka B.P. . Radiocarbon, 40 (1): 517-534. [20] Wang, Y. Q., Cao, J. J., Zhang, X. Y., et al., 2004. Carbonate content and carbon and oxygen isotopic composition of surface soil in the dust source regions of China. Marine Geology & Quaternary Geology, 1: 113-117 (in Chinese with English abstract). [21] Xia, Z. K., Chen, F. Y., Chen, Y., et al., 2001. Environmental background of evolution from the paleolithic to neolithic culture in Nihewan basin, North China. Science in China (Ser. D), 9: 779-788. [22] Xia, Z. K., Yang, X. Y., 2003. Preliminary study on the flood events about 4 ka B.P. in North China. Quaternary Science, (23) 6: 667-674 (in Chinese with English abstract). [23] Yang, X. Y., Xia, Z. K., 2001. Summarizing the environmental archaeology development in China. Progress in Geograph, (16) 6: 761-768 (in Chinese with English abstract). [24] Yang, X. Y., Xia, Z. K., Cui, Z. J., et al., 2004. Environmental settings of archaeological sites depositional processes and distribution at Guanting basin. Acta Geographica Sinica, (59) 3: 455-461 (in Chinese with English abstract). [25] Yin, J. H., Pen, G., Jiao, W. Q., et al., 1997. A preliminary study on the radiocarbon dating of different organic fraction separated from peat. Seismology and Geology, 3: 227-280. [26] Yokoyama, Y., Esat, T. M., Lambeck, K., et al., 2000. Last ice age millennial scale climate changes recorded in Huon Peninsula corals. Radiocarbon, 42 (3): 383-401. doi: 10.1017/S0033822200030320 [27] Zhang, C. J., Chen, F. H., Shang, H. M., et al., 2004. The paleoenvironmental significance of organic carbon isotope in lacustrine sediments in the arid China: An example from Sanjiaocheng palaeolake in Minqin. Quaternary Science, 24 (1): 88-94 (in Chinese with English abstract). [28] Zhang, G. L., He, Y., Gong, Z. T., 2004. Characteristics of organic carbon distribution in anthropogenic soils and its implication on carbon sequestration. Quaternary Science, 24 (2): 149-159 (in Chinese with English abstract). [29] Zhang, H. C., Ma, Y. Z., Li, J. J., et al., 1998. The Holocene paleoclimatic change in southern vicinity of Tengger Dessert. Chinese Science Bulletin, 44 (16): 550-555. [30] Zhou, Q. Y., Huang, C. C., Pang, J. L., 2004. Study in relationship between the pedogenetic environment changes and human impact in the Holocene soil of the Loess Plateau in the upper reaches of Jinghe. Arid Land Geography, 27 (4): 43-51 (in Chinese with English abstract). [31] Zhu, Z.Y., Ding, Z. L., 1994. Quaternary paleoclimate and new tectonic change in the Loess Plateau, China. Geo- logical Publishing House, Beijing(in Chinese). [32] 陈文寄, 计凤桔, 王非, 1999. 年轻地质体系的年代测定(续)——新方法、新进展. 北京: 地质出版社. [33] 郭正堂, N. 菲多罗夫, 1990. 中国中部黄土和古土壤中碳酸钙的聚集和溶蚀. 见: 刘东生. 黄土、第四纪地质、全球变化, 第1辑, 93-97. [34] 刘嘉麒, 陈铁梅, 聂高众, 等, 1994. 渭南黄土剖面的年龄测定及十五万年来高分辨时间序列的建立. 第四纪研究, (3): 193-202. [35] 沈承德, 易惟熙, 周卫健, 等, 1990. 14C、碳循环及全球变化. 见: 刘东生编. 黄土、第四纪地质、全球变化, (第2辑), 27-34. [36] 石建省, 李铮华, 魏明建, 等, 1998. 黄土与古气候演化. 北京: 地质出版社. [37] 王亚强, 曹军骥, 张小曳, 等, 2004. 中国粉尘区表土碳酸盐含量与碳同位素组成. 海洋地质与第四纪地质, 24 (1): 113-117. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200401016.htm [38] 夏正楷, 杨晓燕, 2003. 我国北方4ka前后异常洪水事件的初步研究. 第四纪研究, 23 (6): 667-674. doi: 10.3321/j.issn:1001-7410.2003.06.010 [39] 杨晓燕, 夏正楷, 2001. 中国环境考古学研究综述. 地球科学进展, 16 (6): 761-768. doi: 10.3321/j.issn:1001-8166.2001.06.004 [40] 杨晓燕, 夏正楷, 崔之久, 等, 2004. 青海官亭盆地考古遗存堆积形态的环境背景. 地理学报, 59 (3): 455-461. doi: 10.3321/j.issn:0375-5444.2004.03.016 [41] 张成君, 陈发虎, 尚华明, 等, 2004. 中国西北干旱区湖泊沉积物中有机质碳同位素组成的环境意义——以民勤盆地三角城古湖泊为例. 第四纪研究, 24 (1): 88-94. doi: 10.3321/j.issn:1001-7410.2004.01.011 [42] 张甘霖, 何跃, 龚子同, 2004. 人为土壤有机碳的分布特征及其固定意义. 第四纪研究, 24 (2): 149-159. doi: 10.3321/j.issn:1001-7410.2004.02.004 [43] 中国科学院贵阳地球化学研究所14C实验室, 1977. 14C年龄测定方法及其应用. 北京: 科学出版社. [44] 周群英, 黄春长, 庞奖励, 2004. 泾河上游黄土高原全新世成壤环境演变与人类活动影响. 干旱地理, 27 (4): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200402002.htm [45] 朱照宇, 丁仲礼, 1994. 中国黄土高原第四纪古气候与新构造演化. 北京: 地质出版社.