Oxygen and Carbon Isotope Records of Quaternary Calcareous Nannofossils from the Western Pacific Warm Pool and Their Palaeoceanographical Significance
-
摘要: 对西太平洋暖池区MD97-2140柱状样1.75Ma以来的钙质超微化石进行了氧碳同位素分析.结果表明超微化石δ18O值与浮游有孔虫Globigerinoides ruber δ18O值在变化趋势和周期上都具有明显相似性.根据超微化石δ18O值也可以划分出59个氧同位素期, 1748ka到900ka期间超微化石δ18O值的变化周期以41ka为主, 而850ka到6ka期间则以100ka为主.这说明超微化石氧同位素分析可以像有孔虫氧同位素分析一样在大洋地层学和古海洋学、古气候学研究中发挥重要作用.超微化石δ13C值变化则呈现阶段性变化的特点, 以900ka, 480ka和250ka时间面为界, 可分四大阶段.同时, MD97-2140柱状样超微化石δ13C值的这种变化规律与邻近ODP807站揭示的海水初级生产力变化趋势极为相似, 意味着超微化石δ13C值是反映海水初级生产力变化的一项重要指标.Abstract: Oxygen and carbon isotopic analyses have been carried out on calcareous nannofossils from core MD97-2140 in the Western Pacific warm pool. The results demonstrate that the δ18O values of calcareous nannofossils for the past 1.75 Ma vary systematically with δ18O values of planktonic foraminifer Globigerinoides ruber from the same core. The δ18O records of calcareous nannofossils show a dominant 41 ka peak between 1 478 and 900 ka and a 100 ka peak between 850 and 6 ka, and 59 isotope stages can be recognized. The similarity between δ18O records of planktonic foraminifera and nannofossils implies that calcareous nannofossil δ18O can also play an important role in stratigraphic and palaeoceanographic studies. The δ13C records of nannofossils can be divided into four major stages respectively at the boundaries 900 ka, 480 ka and 250 ka. The trends of the nannofossil δ13C records from MD97-2140 are similar to primary productivity variations at ODP site 807, also located in the Western Pacific warm pool, indicating that nannofossil δ13C can be used as an indicator of sea surface palaeoproductivity.
-
图 2 MD97-2140柱状样1.75 Ma以来钙质超微化石与浮游有孔虫氧同位素曲线对比及氧同位素期划分
浮游有孔虫氧同位素值及样品年龄据De Garidel-Thoron et al. (2005)
Fig. 2. Downhole variations in theδ18O of calcareous nannofossils (this study) and planktonic foraminifera (De Garidel-Thoron et al. (2005)) over the past 1.75 Ma in MD97-2140
-
[1] Anderson, T. F., Steinmetz, J. C., 1981. Isotopic and biostratigraphical records of calcareous nannofossils in a Pleistocene core. Nature, 294 (5843): 741-744. doi: 10.1038/294741a0 [2] Anderson, T.F., Steinmetz, J.C., 1983. Stable isotopes in calcareous nannofossils: Potential application to deep-sea paleoenvironmental reconstructions during the Quaternary. In: Meulenkamp, J, E., ed., Reconstruction of marine paleoenvironments. Utrecht. Micropal. Bull., 30: 189-204. [3] Anderson, T. F., Cole, S. A., 1975. The stable isotope geochemistry of marine coccoliths: A preliminary comparison with planktonic foraminifera. J. Foraminiferal Res., 5 (3): 188-192. doi: 10.2113/gsjfr.5.3.188 [4] Baumann, K. H., Cěpek, M., Kinkel, H., 1999. Coccolith- ophores as indicators of ocean water masses, surface- water temperature, and paleoproductivity— Examples from the South Atlatic. In: Fischer, G., Wefer, G., eds., Use of proxies in paleoceanography: Examples from the South Atlantic. Springer-Verlag, 111-144. [5] Beaufort, L., Lancelot, Y., Camberlin, P., et al., 1997. Insolation cycles as a major control of equatorial Indian Ocean primary production. Science, 278: 1451-1454. doi: 10.1126/science.278.5342.1451 [6] DeGaridel-Thoron, T., Rosenthal, Y., Bassinot, F., et al., 2005. Stable sea surface temperatures in the Western Pacific warm pool over the past 1.75 million years. Nature, 433 (20): 294-298. [7] Dudley, W. C., Blackwelder, P., Brand, L., et al., 1986. Stable isotopic composition of coccoliths. Mar. Micropaleontol., 10: 1-8. doi: 10.1016/0377-8398(86)90021-6 [8] Dudley, W. C., Duplessy, J. C., Blackwelder, P. L., et al., 1980. Coccoliths in Pleistocene-Holocene nannofossil assemblages. Nature, 285 (5762): 222-223. doi: 10.1038/285222a0 [9] Dudley, W. C., Nelson, C. S., 1989. Quaternary surface- water stable isotope signal from calcareous nannofossils at DSDP Site 593, southern Tasman Sea. Mar. Micro-paleontol., 13: 353-373. doi: 10.1016/0377-8398(89)90025-X [10] Goodney, D. E., Margolis, S. V., Dudley, W. C., et al., 1980. Oxygen and carbon isotopes of recent calcareous nannofossils as paleoceanographic indicators. Mar. Micropaleontol., 5: 31-42. doi: 10.1016/0377-8398(80)90005-5 [11] Liu, C. L., Cheng, X. R., Zhu, Y. H., et al., 2002. Oxygen and carbon isotope records of calcareous nannofossils for the past 1 Ma in the southern South China Sea. Chinese Sci. Bull., 47 (10): 798-803. doi: 10.1360/02tb9180 [12] Margolis, S. V., Kroopnick, P. M., Goodney, D. E., et al., 1975. Oxygen and carbon isotopes from calcareous nannofossils as paleoceanographic indicators. Science, 189: 555-557. doi: 10.1126/science.189.4202.555 [13] Molfino, B., McIntyre, A., 1990. Paleoenvironments in China during the last glacial maximum and the Holocene optimum. Science, 249: 766-769. doi: 10.1126/science.249.4970.766 [14] Paull, C. K., Thierstein, H. R., 1987. Stable isotopic fraction among particles in Quaternary coccolith-sized deep-sea sediments. Paleoceanography, 2 (4): 423-429. doi: 10.1029/PA002i004p00423 [15] Steinmetz, J. C., Anderson, T. F., 1984. The significance of isotopic and paleontologic results on Quaternary calcare- ous nannofossil assemblages from Caribbean core P6304-4. Mar. Micropaleontol., 8: 403-42. doi: 10.1016/0377-8398(84)90003-3 [16] Steinmetz, J.C., 1994. Stable isotopes in modern coccolith- ophores. In: Winter, A., Siesser, W.G., eds., Coccolith- ophores. Cambridge University Press, London, 219-229. [17] Stoll, H., Ziveri, P., 2002. Separation of monospecific and restricted coccolith assemblages from sediments using differential settling velocity. Mar. Micropaleontol., 46: 209-221. doi: 10.1016/S0377-8398(02)00040-3 [18] Ziveri, P., Stoll, H., Probert, I., et al., 2000. Is stable isotope composition of coccolith carbonate an effective palaeoceanographic proxy? J. Nannoplankton Res., 22 (2): 156-157. [19] Ziveri, P., Stoll, H., 2002. Coccolith calcite chemistry in paleoceanography. J. Nannoplankton Res., 24 (2): 183.