Paleoceanographic Records and Sea Ice Extension History of the Northern Bering Sea Slope over the Last 100 ka
-
摘要: 白令海北部陆坡B2-9柱状样中生源组分的研究显示, 自MIS5.3期以来表层生产力指标的粗组分和蛋白石含量呈阶梯状增加, 反映表层生产力阶段式的增长.全新世表层生产力达到最高, 并且MIS3.2~2期高, 比MIS5.3~3.3期最低.高有机碳含量对应于高C/N比值, 显示有机碳混合来源, 不能作为表层生产力的指标.MIS5.1, 3.3~3.2期和全新世高的有机碳含量和C/N比值反映间冰期陆源有机物质输入量的增加.MIS5.3期至中全新世, 不断增加的陆源砂级和粉砂级颗粒组分说明随着气候的逐渐变冷, 陆架海冰在不断扩张.伐冰碎屑和碳屑颗粒冰期、间冰段和末次冰消期升高, 而间冰期降低, 反映冰期白令海陆架海冰扩张和间冰期海冰消融的过程.冰期海冰扩张与北美大陆气候的相互关联, 揭示了晚第四纪冰期旋回中白令海海冰扩张及其对全球气候变化的响应.Abstract: Quantitative analytic results of biogenic components in core B2-9 from the northern Bering Sea slope indicate that coarse fraction and opal content, serving as proxies of surface productivity, have increased stepwise since the MIS 5.3, reflecting periodic enhancement in surface productivity. Surface productivity attained its highest level during the Holocene, followed by MIS 3.2 to 2. MIS 5.3 to 3.3 showed the lowest level. High TOC content, together with a high C/N ratio, shows that TOC was deposited from mixed sources and therefore can not be used as a proxy of surface productivity. But high TOC and C/N ratio during MIS 5.1, 3.3 to 3.2 and the Holocene reflect that the terrigenous organic matter input increased during interglacial periods. Increases in fine-and silt-grained terrigenous components from MIS 5.3 to the Middle Holocene imply that sea ice on the Bering Sea slope extended continuously in a cooling climate. Ice-rafted (> 0.154 mm quartz and lithic grains) and charcoal detritus increased during glacial, interstadial and the last deglaciation periods, and decreased during interglacial periods, suggesting that sea ice volume on the slope extended and melted, respectively, during glacial and interglacial periods. The extension of sea ice during glacial periods was linked with the climate over North American continent, revealing the responses of sea ice extension in the Bering Sea to global climate change during Late Quaternary glacial and interglacial cycles.
-
Key words:
- surface productivity /
- ice-rafted detritus /
- sea ice extension history /
- Late Quaternary /
- Bering Sea
-
图 1 白令海北部陆坡B2-9柱状样的位置与现代海冰分布范围和持续时间(根据Takahashi, 1999重绘)
Fig. 1. Location of core B2-9 and modern distribution pattern and duration of the sea ice in the northern Bering Sea
-
[1] Abelmann, A., Gersonde, R., 1988. Cycladophora davisiana stratigraphy in Plio-Pleistocene cores from the Antarctic Ocean(Atlantic sector). Micropaleontology, 34 (3): 268-276. doi: 10.2307/1485757 [2] Bassinot, F. C., Beaufort, L., Vincent, E., et al., 1994. Coarse fraction fluctuations in pelagic carbonate sediments from the tropic Indian Ocean: A 1 500-kyr record of carbohate dissolution. Paleoceanography, 9 (4): 579-600. doi: 10.1029/94PA00860 [3] Brigham-Grette, J., Lundeen, Z., 2003. paleoenvironmental look at sea ice extent during earlier warm periods. Unpublished data. [4] Bjørklund, K. R., Ciesielski, P. F., 1994. Ecology, morphology, stratigraphy and the paleoceanographic significance of Cycladophora davisiana davisiana. Part I: Ecology and morphology. Mar. Micropaleontol. , 24: 71-88. doi: 10.1016/0377-8398(94)90012-4 [5] Brathauer, U., Abelmann, A., Gersonde, R., et al., 2001. Calibration of Cycladophora davisiana events versus oxygen isotope stratigraphy in the subantarctic Atlantic Ocean—A stratigraphic tool for carbonate-poor Quaternary sediments. Mar. Geol. , 175: 167-181. doi: 10.1016/S0025-3227(01)00141-4 [6] Chen, L. Q., Gao, Z. Y., Wang, W. Q., et al., 2003. Distribution characteristic of PCO2 in the Bering Sea basin and its influence to the Arctic carbon sink. Science in China (Series D), 33 (8): 781-790 (in Chinese). [7] Chen, R. H., Meng, Y., Hua, Y., et al., 2001. Calcareous and siliceous microorganisms in surface sediments of Chukchi and Bering Seas. Mar. Geol. Quat. Geol. , 21 (4): 25-30 (in Chinese with English abstract). [8] Ciesielski, P. F., Bjørklund, K. R., 1995. Ecology, Ecology, morphology, stratigraphy, and the paleoceanographic significance of Cycladophora davisiana. PartⅡ : Stratigraphy in the North Atlantic(DSDP Site 609) and Labrador Sea (ODP Site 646 B). Mar. Micropaleontol. , 25: 67-86. doi: 10.1016/0377-8398(94)00027-K [9] Cwynar, L. C., Ritchie, J. C., 1980. Arctic steppe-trundra: A Yukon perspective. Science, 208: 1375-1377. doi: 10.1126/science.208.4450.1375 [10] Gorbarenko, S. A., 1996. Stable isotope and lithologic evi- dence of late-glacial and Holocene oceanography of the northwestern Pacific and its marginal seas. Quat. Res. , 46: 230-250. doi: 10.1006/qres.1996.0063 [11] First Chinese National Arctic Research Expedition Team, 2000. Report of the first Chinese national Arctic research expedition. China Ocean Press, Beijing, 1-191 (in Chinese). [12] Hopkins, D. M., 1972. The paleogeography and climatic his- tory of Beringia during late Cenozoic time. Internord, 12: 12-150. [13] Joly, K., Adams, L., 2002. Evaluating the impacts of wild- land fires on Caribou in Interior Alaska. Arctic Res. , 4: 63-67. [14] Li, X., Wang, R. J., Chen, R. H., et al., 2004. Late Quaternary paleoceanographic and paleoclimatologic records on the slope of the northern Bering Sea. Chinese J. Polar Res. , 16 (3): 261-269 (in Chinese with English abstract). [15] Martinson, D. G., Pisias, N. G., Hays, J. D., et al., 1987. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 -300 000-year chronos- tratigraphy. Quat. Res. , 27: 1-29. doi: 10.1016/0033-5894(87)90046-9 [16] Meng, Y., Chen, R. H., Zheng, Y. L., 2001. Foraminifera in the surface sediments of the Bering and Chukchi Seas and their sedimentary environment. Acta Oceanologica Sinica, 23 (6): 83-93 (in Chinese with English abstract). [17] Morley, J. J., Hays, J. D., 1979. Cycladophora davisiana: A stratigraphic tool for Pleistocence North Atlantic and interhemispheric correlation. Earth Planet. Sci. Lett. , 44: 383-389. doi: 10.1016/0012-821X(79)90077-3 [18] Morley, J. J., Hays, J. D., 1983. Oceanographic conditions associated with high abundances of the radiolarian Cycladophora davisiana. Earth Planet. Sci. Lett. , 66: 63-72. doi: 10.1016/0012-821X(83)90126-7 [19] Morley, J. J., 1986. Comparison of the Pleistocene records of the radiolarian Cycladophora davisiana at high-latitude sites of the Deep Sea Drilling Project. Init. Rept. DS-DP, 94: 889-894. [20] Morley, J. J., Tiase, V. L., Ashby, M. M., et al., 1995. A high-resolution stratigraphy for Pleistocene sediments from North Pacific sites 881, 883 and 887 based on abundance variations of the radiolarian Cycladophora davisiana. Proc. ODP, Sci. Results, 145: 133-140. [21] Morley, J. J., Heusser, L. E., 1997. Role of orbital forcing in East Asian monsoon climates during the last 350 kyr: Evidence from terrestrial and marine climate proxies from core RC14-99. Paleoceanography, 12 (3): 483-493. doi: 10.1029/97PA00213 [22] Mortlock, R. A., Froelich, P. N., 1989. A simple method for the rapid determination of biogenic opal in the pelagic marine sediment. Deep-SeaRes. , 36 (9): 1415-1426. [23] Nakatsuka, T., Watannabe, K., Handa, N., et al., 1995. Glacial to interglacial surface nutrient variations of Bering deep basins recorded by δ13C and δ15N of sedimentary organic matter. Paleoceanography, 10 (6): 1047-1061. doi: 10.1029/95PA02644 [24] Nechaev, V. P., Sorochinskaya, A. V., Tsoy, I. B., et al., 1994. Clastic component in Quaternary sediment of the northwest Pacific and their paleo-oceanic significance. Mar. Geol. , 118: 119-137. doi: 10.1016/0025-3227(94)90116-3 [25] Piperno, R., 1997. Phytoliths and microscopic charcoal from Leg 155: A vegetational and fire history of the Amazon basin during the last 75 k. Y. . Proc. ODP, Sci. Results, 155: 411-418. [26] Sarnthein, M., Winn, K., 1988. Global variations of surface ocean productivity in low and mid latitudes: Influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21 000 years. Paleoceanography, 3 (3): 361-399. doi: 10.1029/PA003i003p00361 [27] Stax, R., Stein, R., 1993. Long-term changes in the accumu- lation of organic carbon in Neogene sediments, Ontong Java plateau. Proc. ODP Sci. Results, 130: 573-579. [28] Takahashi, K., 1999. The Okhotsk and Bering Seas: Critical marginal seas for the land-ocean linkage. In: Yoshiki, K., Kafayama, H., eds., Land-sea link in Asia. Pro- ceedings of an international workshop on sediment transport and storage in coastal sea-ocean system. Tsukuba, Japan, 341-353. [29] Takahashi, K., Fujitani, N., Yanada, M., 2002. Long term monitoring of Particle fluxes in the Bering Sea and the central Subarctic Pacific Ocean, 1990-2000. Progr. Oceanogr. , 55: 95-112. doi: 10.1016/S0079-6611(02)00072-1 [30] Verardo, D. J., Rudiman, W. F., 1996. Late Pleistocene charcoal in tropical Atlantic deep-sea sediments: Climate and geochemical significance. Geology, 24 (9): 855-857. doi: 10.1130/0091-7613(1996)024<0855:LPCITA>2.3.CO;2 [31] Wang, R. J., Chen, R. H., 2004. Variations of siliceous microorganisms in surface sediments of the Bering Sea and their environmental control factors. Earth Science—Journal of China University of Geosciences, 29 (6): 685-690 (in Chinese with English abstract). [32] Wang, R. J., Chen, R. H., 2005. Cycladophora davisiana (radiolarian)in the Bering Sea during the Late Quaternary: A stratigraphic tool and proxy of the glacial Subarctic Pacific Intermediate Water. Science in China (Ser. D), 35 (2): 149-157 (in Chinese). [33] Wang, R., Clemens, S., Huang, B., et al., 2003. Late Quaternary paleoceanographic changes in the northern South China Sea(ODP Site 1146): Radiolarian evidence. J. Quat. Sci. , 18 (8): 745-756. doi: 10.1002/jqs.784 [34] 陈立奇, 高众勇, 王伟强, 等, 2003. 白令海盆PCO2分布特征及其对北极碳汇的影响. 中国科学(D辑), 33 (8): 781-790. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200308009.htm [35] 陈荣华, 孟翊, 华棣, 等, 2001. 楚科奇海与白令海表层沉积中的钙质和硅质微体化石研究. 海洋地质与第四纪地质, 21 (4): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200104006.htm [36] 李霞, 王汝建, 陈荣华, 等, 2004. 白令海北部陆坡晚第四纪的古海洋与古气候学记录. 极地研究, 16 (3): 261-269. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ200403011.htm [37] 孟翊, 陈荣华, 郑玉龙, 2001. 白令海与楚科奇海表层沉积物中的有孔虫及其沉积环境. 海洋学报, 23 (6): 83-93. [38] 王汝建, 陈荣华, 2004. 白令海表层沉积物中硅质生物的变化及其环境控制因素. 地球科学——中国地质大学学报, 29 (6): 685-690. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200406006.htm [39] 王汝建, 陈荣华, 2005. 白令海晚第四纪的Cycladophora davisiana: 一个地层学工具和冰期亚北极太平洋中层水的替代物. 中国科学(D辑), 35 (2): 149-157. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200502005.htm [40] 中国首次北极科学考察队, 2000. 中国首次北极科学考察报告. 北京: 海洋出版社, 1-191.