Visible Reflectance Record of South China Sea Sediments during the Past 220 ka and Its Implications for East Asian Monsoon Variation
-
摘要: 对南海越南岸外“太阳号”95航次17954孔220ka以来的沉积样品进行了漫反射光谱分析, 并从中提取F1和F2两个主因子及亮度和红度等漫反射光谱特征值, 发现漫反射光谱F1值和亮度反映了沉积物中的碳酸盐含量, 而漫反射光谱F2值和红度反映了沉积物中的铁氧化物含量, 后者可用作东亚夏季风的替代性指标.17954孔沉积物的漫反射光谱F2值显示, 倒数第二次冰消期东亚夏季风快速增长时间约在129ka; 本次工作还发现东亚夏季风在两次冰消期前的氧同位素2阶段和6阶段晚期各有一个异常强盛的时期.漫反射分析结果显示东亚夏季风主要受控于太阳辐射强度变化, 并明显地受低纬地区气候的影响.Abstract: The East Asian monsoon (EAM) is an integral part of the global climatic system. Comparison between marine and terrestrial records can improve our knowledge of the monsoon system and how it responds to changing global conditions. In this paper, reflectance spectroscopy analysis is used to characterize the sediments in core 17954, taken from the South China Sea and representing the past 220 ka. The results show that sediment brightness (factor 1) seems to reflect carbonate contents and its changes are similar to the benthic oxygen isotope. Sediment redness (factor 2), which is related to iron oxide content, seems to monitor paleoclimatic changes in the core. Iron oxide appears to be eroded from catchments and is transported by fluvial means into the SCS. Thus, redness increases (factor 2 decreases) at times of increased precipitation, that is, as monsoon strength increases. Our results indicate that the Monsoon Termination Ⅱ occurred at ca. 129 ka based on orbital chronology. Two abnormally strong summer events occurred at the intervals just before the last two terminations, which are confirmed by other records around the world. A time series anlaysis of the factor 2 record indicates a half-precession frequency, which may correlate with the abnormally strong summer monsoon events, suggesting that the tropical ocean had a major effect on the East Asian summer monsoon.
-
Key words:
- visible reflectance /
- East Asian summer monsoon /
- South China Sea /
- iron oxide /
- half-precession
-
图 2 南海17954孔220 ka来沉积物漫反射特征值与碳酸盐含量及底栖有孔虫(BF) 氧同位素变化
Fig. 2. Redness (factor 2), brightness (factor 1), as well as carbonate contents and benthic δ18O record of core 17954 from South China during the last 220 ka. Oxygen isotopic stages are also labeled at right (Jian et al., 2001)
图 3 漫反射光谱指示的220 ka来东亚夏季风变迁
图中上部为漫反射光谱值F2和太阳辐射(虚线), 中间为董哥洞氧同位素, 下部为底栖有孔虫(BF) 氧同位素
Fig. 3. Comparisons of the factor 2 record (upper) and benthic δ18O record (bottom, Jian et al., 2001) of core 17954 with the stalagmite δ18O record (middle) from Dongge Cave (Yuan et al., 2004). Insolation at 20°N averaged over the months of June, July, and August is shown for comparison (dashed line). Vertical lines show half-height of factor 2 and benthic δ18O respectively during terminations Ⅱ
-
[1] An, Z. S., Kukla, G. J., Porter, S. C., etal., 1991. Magnetic susceptibility evidence of monsoon variation on the loess plateau of central China during the last 130 000 years. Quaternary Research, 36: 29-36. doi: 10.1016/0033-5894(91)90015-W [2] Chen, L. X., Zhu, Q. G., Luo, H. B., et al., 1991. The east Asian monsoon. China Meteorology Press, Beijing (in Chinese). [3] Deaton, B. C., Balsam, W. L., 1991. Visible spectroscopy—arapid method for determining hematite and goethite concentration in geological materials. Journal of Sedi-mentary Petrology, 61: 628-632. doi: 10.1306/D4267794-2B26-11D7-8648000102C1865D [4] Ding, Z. L., Liu, T. S., Rrtter, N. W., et al., 1995. Ice-volume forcing of East Asian winter monsoon variations in the past 800 000 years. Quaternary Research, 44: 149-159. doi: 10.1006/qres.1995.1059 [5] Huang, B. Q., Jian, Z. M., Cheng, X. R., et al., 2001. Late Quaternary upper-water column structure in upwelling areas of the South China Sea. Chinese Science Bulletin, 46: 1741-1745. doi: 10.1007/BF02900664 [6] Huang, B. Q., Jian, Z. M., Cheng, X. R., et al., 2003. Foram-iniferal responses to upwelling variations in the South China Sea over the last 220 000 years. Marine Micropa-leontology, 47: 1-15. doi: 10.1016/S0377-8398(02)00045-2 [7] Huang, W., Liu, Z. F., Chen, X. L., et al., 2003. Searching physical indicators of carbonate contents of deep sea sediments. Earth Science—Journal of China University of Geosciences, 28 (2): 157-162 (in Chinese with English abstract). [8] Ji, J. F., Balsam, W. L., Chen, J., 2001. Mineralogic and cli-matic interpretations of the Luochuan loess section (China) based on diffuse reflectance spectrophotome-try. Quaternary Research, 56: 23-30. doi: 10.1006/qres.2001.2238 [9] Ji, J. F., Balsam, W. L., Chen, J., et al., 2002. Rapid and precise measurement of hematite and goethite concen-trations in the Chinese loess sequences by diffuse reflec-tance spectroscopy. Clays and Clay Minerals, 250: 10-218. [10] Ji, J. F., Shen, J., Balsam, W. L., et al., 2005. Asian Mon-soon oscillations in the northeastern Qinghai-Tibet plat-eau since the late glacial as interpreted from visible re-flectance of Qinghai Lake sediments. Earth and Plane-tary Science Letters, 233: 61-70. doi: 10.1016/j.epsl.2005.02.025 [11] Jian, Z. M., Huang, B. Q., Lin, H., et al., 2001. Late Qua-ternary upwelling intensity and East Asian monsoon forcing in the South China Sea. Quaternary Research, 55: 363-370. doi: 10.1006/qres.2001.2231 [12] Lea, D. W., Pak, D. K., Spero, H. J., 2000. Climate impact of late quaternary equatorial Pacific sea surface tempera-ture variations. Science, 289: 1719-1724. doi: 10.1126/science.289.5485.1719 [13] McManus, J. F., Oppo, D. W., Cullen, J. L., 1999.0. 5 mil-lion years of millennial-scale climate variability in the North Atlantic. Science, 283: 971-975. doi: 10.1126/science.283.5404.971 [14] Pahnke, K., Zahn, R., Elderfield, H., 2003.340 000-year centennial-scale marine record of southern hemisphere climatic oscillation. Science, 301: 948-952. [15] Short, D. A., Mengel, J. G., Crowley, T. J., et al., 1991. North GR. Filtering of Milankovitch cycles by earth's geography.Quaternary Research, 35: 157-173. [16] Wang, P. X., 1995. The history of South China Sea during the past 150 ka. Tongji University Press, Shanghai, 96-107 (in Chinese). [17] Wang, P. X., Jian, Z. M., Zhao, Q. H., et al., 2003c. Evolu-tion of the South China Sea and monsoon history re-vealed in deep-sea records. Chinese Science Bulletin, 48: 2549-2561. [18] Wang, P. X., Tian, J., Cheng, X. R., et al., 2003b. Exploring cyclic changes of the ocean carbon reservoir. Chinese Science Bulletin, 48: 2536-2548. doi: 10.1360/03wd0155 [19] Wang, P. X., Zhao, Q. H., Jian, Z. M., et al., 2003c. Thirty million year deep-sea records in the South China Sea. Chinese Science Bulletin, 48: 2524-2535. [20] Yuan, D. X., Cheng, H., Edwards, R. L., et al., 2004. Tim-ing, duration, and transitions of the last interglacial Asi-anmonsoon. Science, 304: 575-578. doi: 10.1126/science.1091220 [21] 陈隆勋, 朱乾根, 罗会帮, 等, 1991. 东亚季风, 北京: 气象出版社, 28-101. [22] 黄宝琦, 翦知缗, 2001. 南海晚第四纪上升流区上层水体结构的变化, 科学通报, 46: 948-952. [23] 黄维, 刘志飞, 陈晓良, 等, 2003. 寻找深海碳酸盐沉积含量的物理标志. 地球科学——中国地质大学学报, 28 (2): 157-162. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200302007.htm [24] 汪品先, 1995. 十五万年来的南海, 上海: 同济大学出版社, 96-107. [25] 汪品先, 翦知湣, 赵泉鸿, 等, 2003a. 南海演变与季风历史的深海记录. 科学通报, 48: 2228-2239. [26] 汪品先, 田军, 成鑫荣, 等, 2003b. 探索大洋碳储库的演变周期. 科学通报, 48: 2216-2227. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200321003.htm [27] 汪品先, 赵泉鸿, 翦知湣, 等, 2003c. 南海三千万年的深海记录. 科学通报, 48: 2206-2215. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200321002.htm