Astronomically Tuned Time Scale 12 Ma to 18.3 Ma, ODP Site 1148, Northern South China Sea
-
摘要: ODP1148站深海沉积岩心的磁化率记录显示出较强的周期性变化规律.研究发现, 中新世和渐新世的深海地层物性参数具有很强的斜率周期.Shackleton et al.利用这一规律, 以北半球高纬太阳辐射曲线作为天文调谐的目标, 以ODP154航次的深海沉积岩心的磁化率记录作为调谐对象, 将磁化率的极大值与北半球天文辐射的极小值相对应, 建立了14~34 Ma的天文调谐的年代标尺.采用相同的方法, 利用南海北部ODP1148站深海沉积岩心的磁化率记录和北半球高纬太阳辐射曲线建立了南海中中新世天文调谐的年代标尺.调谐后的磁化率记录显示了很强的斜率周期和较强的岁差周期, 并与太阳辐射在这2个记录上高度相关, 此外偏心率周期在磁化率记录中也较显著.调谐后1148站的浮游有孔虫事件年龄与ODP154航次采用相同的天文调谐方法获取的事件年龄异常接近, 而与传统方法获取的生物地层事件年龄有较大差距, 这在一定程度上证明了利用天文调谐的方法建立中新世深海地层年代标尺的可行性.Abstract: Lithological cyclicity was observed in magnetic susceptibility records of the deep sea sediments from ODP Site 1184 in the northern South China Sea (SCS), which was considered to be related to obliquity cycles in the Miocene and Oligocene. Using recent methodology, an astronomically tuned time scale for the middle Miocene of ODP Site 1148 in the northern SCS was established. After tuning, the magnetic susceptibility (MS) records show strong obliquity and precession cycles as well as prominent eccentricity cycles. The planktonic foraminiferal events identified within the studied interval of ODP Site 1148 show ages very close to those set by Shackleton et al. (1999) for ODP Leg 154, which were obtained by the same astronomical tuning method as this study, but differ substantially from the traditional age. The results lend support to the practicality of the method for establishing a tuned Miocene time scale.
-
Key words:
- South China Sea /
- ODP site 1148 /
- Middle Miocene /
- magnetic susceptibility /
- astronomical timescale
-
图 4 南海北部ODP1148站磁化率记录与北半球太阳辐射记录的交叉频谱
图 4上部的实线代表磁化率的频谱, 虚线代表太阳辐射记录的频谱; 图 4下部的实线代表相关系数
Fig. 4. Cross spectral analyses of magnetic susceptibility records of ODP site 1148 with the high northern hemisphere insolation records. The solid line in the upper part denotes the spectrum of the MS records and the dashed line the insolation records
表 1 ODP1148站280~370 m合成深度浮游有孔虫事件及其年龄
Table 1. Foraminiferal events of ODP Site 1148 (280-370 m)
-
[1] Berger, A., 1988. Milankovitch theory and cli mate. Rev. Geo-phys., 26: 624-657. doi: 10.1029/RG026i004p00624 [2] Berger, A., Loutre, M. F., 1991. Insolation values for the cli-mate of the last 10 million years. Quat. S ci. Rev., 10: 297-317. doi: 10.1016/0277-3791(91)90033-Q [3] Berggren, W. A., Kent, D. V., Van Couvering, J. A., 1985a. The Neogene. Part2. Neogene geochronology and chro-nostratigraphy. In: Snelling, N. J., ed., The chronology of the geological record. Geol. Soc. Mem., 10: 211-260. [4] Berggren, W. A., Kent, D. V., Flynn, J. J., 1985b. Jurassic to Paleogene. Part2. Paleogene geochronology and chro-nostratigraphy. In: Snelling, N. J., ed., The chronology of the geological record. Geol. Soc. Mem., 10: 141-195. [5] Berggren, W. A., Kent, D. V., Swisher, etal., 1995. A re-vised Cenozoic geochronology and chronostratigraphy. In: Berggren, W. A., Kent, D. V., Aubry, M. P., eds., Geochronology times cales and global stratigraphic cor-relation. SEPMSpe. Publ., 54: 129-212. [6] Cande, S. C., Kent, D. V., 1992. A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geo-phys. Res., 97: 13917-13951. doi: 10.1029/92JB01202 [7] Cande, S. C., Kent, D. V., 1995. Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 100: 6093-6095. doi: 10.1029/94JB03098 [8] Imbrie, J., Imbrie, J. Z., 1980. Modeling the climatic re-sponse to orbital variations. Science, 207: 943-953. doi: 10.1126/science.207.4434.943 [9] Imbrie, J., Hays, J. D., Martinson, D. G., etal., 1984. The orbital theory of Pleistocene climate: Support from a re-vised chronology of the marine δ18O record. In: Berger, A., ed., Milankovitch and Climate, D. Reidel, Norwell, Mass, 269-305. [10] Laskar, J., Joutel, F., Boudin, F., 1993. Orbital, precession-al, and insolation quantities for the Earth from-20 Myr to+10 Myr. Astron. Astrophys., 270: 522-533. [11] Shackleton, N. J., Hall, N. J., Pate, D., 1995a. Pliocene sta-ble isotope stratigraphy of Site 846. In: Pisias, N. G., Mayer, L. A., Janecek, T. R., etal., eds., Proc. ODPSci. Results, 138: 337-355. [12] Shackleton, N. J., Crowhurst, S., Hagelberg, T., etal., 1995b. A new Late Neogene time scale: Application to Leg 138 sites. In: Pisias, N. G., Mayer, L. A., Janecek, T. R., etal., eds. . Proc. ODPSci. Results, 138: 73-101. [13] Shackleton, N. J., Crowhurst, S., 1997. Sediment fluxes based on an orbitally tuned time scale 5 Ma to 14 Ma, Site 926. In: Shackleton, N. J., Curry, W. B., Richter, C., etal., eds., Proc. ODP, Sci. Results, 154: 69-82. [14] Shackleton, N. J., Crowhurst, S. J., Weedon, G. P., etal., 1999. Astronomical calibration of Oligocene-Miocenetime. Phil. Trans. R. Soc. LondonA, 357: 1907-1929. doi: 10.1098/rsta.1999.0407 [15] Tauxe, L., Tucker, P., Petersen, N. P., etal., 1984. Magne-tostratigraphy of Leg 73 sediments. In: Hsu, K. J., ed. . Initial Rept. DSDP, 73: 609-621. [16] Tian, J., Wang, P. X., Cheng, X. R., etal., 2002. Astronomi-cally tuned Plio-Pleistocene benthic δ18O records from South China Sea and Atlantic-Pacific comparison. Earth and Planetary Science Letters, 203: 1015-1029. doi: 10.1016/S0012-821X(02)00923-8 [17] Tian, J., Wang, P. X., Cheng, X. R., 2004. Stable isotope equilibrium test between benthic foraminifer Cibi-cidoides and Uvigerina at ODP Site 1143, Southern South China Sea. Earth Science—Journal of China U-niversity of Geosciences., 29 (1): 1-6 (in Chinese with English abstract). [18] Tian, J., Wang, P. X., Cheng, X. R., etal., 2005. Astronomi-cally tuned Plio-Pleistocene benthic δ18O records from South China Sea and Atlantic-Pacific comparison. Earth Science—Journal of China University of Geosciences, 30 (1): 31-39 (in Chinese with English abstract). [19] Tiedemann, R., Sarnthein, M., Shackleton, N. J., 1994. As-tronomic timescale for the Pliocene Atlanticδ18O and dust flux records from Ocean Drilling Program Site 659. Paleoceanography, 9: 619-638. doi: 10.1029/94PA00208 [20] Wang, P., Prell, W. L., Blum, P., etal., 2000. Proceedings of the ocean drilling program. Initial reports 184, Ocean Drilling Program College Station. [21] Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., etal., 2001a. Periodic and non-periodic climate response to or-bital forcing across the Oligocene-Miocene boundary. Science, 292: 274-277. doi: 10.1126/science.1058288 [22] Zachos, J. C., Pagani, M., Sloan, L., etal., 2001b. Trends, rythyms, and aberrations in global climate 65 Ma to present. Science, 292: 686-693. doi: 10.1126/science.1059412 [23] 田军, 汪品先, 成鑫荣, 2004. 南海ODP1143站底栖有孔虫Cibicidoides与Uvigerina稳定氧碳同位素值的均衡试验. 地球科学——中国地质大学学报, 29 (1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401000.htm [24] 田军, 汪品先, 成鑫荣, 等, 2005. 南海ODP1143站上新世至更新世天文年代标尺的建立. 地球科学——中国地质大学学报, 30 (1): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200501004.htm