Comparison of Modern Biodiversity Variation with Paleozoic-Mesozoic Biotic Crisis
-
摘要: 18世纪以来人类活动对环境造成了强烈破坏, 给生物多样性带来了巨大损失.为了了解生物多样性的变化趋势, 利用“绝灭物种统计法”、“种-区曲线法”和化石记录对400年以来的生物多样性和古—中生代之交的生物绝灭进行了分析.当代生物多样性剧减表现为物种的快速绝灭(从8×104种/Ma增大到1.2×106种/Ma), 而属的绝灭几乎为0;古—中生代之交生物绝灭的初始阶段也表现为物种的快速绝灭(从40种/Ma增大到150种/Ma), 并且这个阶段的属的绝灭速率远低于绝灭高峰阶段的相应值(即66属/Ma远小于465属/Ma), 可见当代生物多样性剧减相当于二叠—三叠系之交生物绝灭的初始阶段.Abstract: Since the 18th century the earth environment was extremely destroyed by anthropogenic activity, associated with the sharp decrease of biodiversity. In order to understand the trend of biodiversity variation, authors compare the biodiversity variation within recent 400 years with the biotic crisis occurring at the transitional period of Paleozoic-Mesozoic. Current biodiversity, evaluated by means of 'statistic of extinction species' and 'species-area curve', is characterized by a high species extinction rate ranging from 8×104 species to 1.2×106 species per million year, but nearly by zero of genus extinction. Similarly, the initial phase of the Paleozoic-Mesozoic mass extinction, calculated from the previously reported fossil records, was also distinguishable by a high species extinction rate ranging from 40 to 150 species per million year and a low extinction rate of genus, 66 genera per million year, which is far less than 465 genera per million year representative of the peak phase of Permian-Triassic mass extinction. Modern biodiversity variation is thus comparable with the initial phase of the Permian-Triassic mass extinction.
-
Key words:
- biodiversity /
- mass extinction /
- Permian-Triassic interval /
- present day.
-
图 1 1600—1990年动物绝灭种数的变化(数据来源: Groombridge, 1992)
Fig. 1. Extinction number of animal species from 1600 to 1990
图 2 当代物种丧失速率的变化趋势(Groombridge, 1992)
Fig. 2. Change tendency of species erosional rate in Asia(a), Latin America(b) and Africa(c)
图 3 二叠—三叠系之交属和种的相对绝灭率(根据化石的已有发现)
a.根据Jin et al.(2000)和王玥等(2001)绘制成的属种绝灭率曲线(从大约253.4 Ma到250.4 Ma的物种分布统计结果); b.根据杨遵仪等(1991)绘制成的种绝灭率曲线(从大约251.6 Ma到250.7 Ma的物种分布统计结果); t1.绝灭的初始阶段; t2.绝灭高峰阶段; t3.绝灭后期
Fig. 3. Relative extinction rate of genus and species in the Permian-Triassic interval(based on present data)
表 1 亚洲—非洲—拉丁美洲森林的覆盖面积及其清除率的变化(Groombridge, 1992)
Table 1. Preliminary estimation of forest area and forest cleared situation in Asia, Africa and Latin America
表 2 亚洲—非洲—拉丁美洲的物种丧失量和物种减少的速率
Table 2. Number and rate of erosional species in Asia, Africa and Latin America
表 3 华南二叠—三叠系之交物种绝灭数及其相对绝灭率(根据化石的已有发现)
Table 3. Extinction species number and its relative extinction rate in Permian-Triassic interval in South China(based on present data)
-
[1] Cracraft, J., Grifo, F.T., 1999. The living planet in crisis-biodiversity science and policy. Columbia University Press, New York, 22-25. [2] Dobson, A.P., 1996. Conservation and biodiversity. Scientific American Library, New York, 59-86. [3] Erwin, D.H., 1994. The great Paleozoic crisis: Life and death in the Permian. Columbia University Press, New York, 134 258. [4] Groombridge, B., 1992. Global biodiversity-status of the earth's living resources. A report compiled by the World Conservation Monitoring Center. Chapman & Hall, London, Glasgow, New York, Tokyo, Melbourne, Madras, 192-265. [5] He, W.H., Feng, Q.L., Gu, S.Z., et al., 2004. Changhsingian(Upper Permian)radiolarian fauna from Meishan D Section, Changxing, Zhejiang in China and its possible paleoecological significance. Journal of Paleontology(in press). [6] Heywood, V.H., 1995. Global biodiversity assessment. Cambridge University Press, Cambridge, 201-258. [7] Jin, Y.G., Wang, Y., Wang, W., et al., 2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science, 289: 432-436. doi: 10.1126/science.289.5478.432 [8] Paul, S.M., Steadman, D.W., 1999. Prehistoric extinctions on islands and continents. In: Ross, D.E. MacPhee., ed., Extinctions in near time-causes, contexts, and consequences. Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, 17-50. [9] Sheldon, N.D., Retallack, G.J., 2002. Low oxygen levels in earliest Triassic soils. Geological Society of America, 30(10): 919-922. [10] Smith, F.D.M., May, R.M., Pellew, R., et al., 1993. How much do we know about the current extinction rate? Tree, 8(10): 375-378. [11] Wang, Y., Cao, C.Q., Jin, Y.G., 2001. Analysis of the confidence intervals of marine fossils around the Permian-Triassic boundary in Meishan, Zhejiang. Acta Palaeontologica Sinica, 40(2): 244-251(in Chinese with English abstract). [12] Yang, Z.Y., Wu, S.B., Yin, H.F., et al., 1991. Permo-Triassic events of South China. Geological Publishing House, Beijing, 1-166(in Chinese). [13] Yang, Z.Y., Yin, H.F., Wu, S.B., et al., 1987. Permian-Triassic boundary stratigraphy and fauna of South China. Geological Publishing House, Beijing, 147-168(in Chinese). [14] Yin, H.F., 2000. Sustainable development from the viewpoint of organism evolution. Geoscience, 14(3): 363-365(in Chinese with English abstract). [15] 王玥, 曹长群, 金玉玕, 2001. 浙江长兴煤山二叠纪末大灭绝化石记录的置信区间分析. 古生物学报, 40(2): 244-251. doi: 10.3969/j.issn.0001-6616.2001.02.010 [16] 杨遵仪, 吴顺宝, 殷鸿福, 等, 1991. 华南二叠—三叠纪过渡期地质事件. 北京: 地质出版社, 1-166. [17] 杨遵仪, 殷鸿福, 吴顺宝, 等, 1987. 华南二叠—三叠系界线地层及动物群. 北京: 地质出版社, 147-168. [18] 殷鸿福, 2000. 从生物演化看可持续发展. 现代地质, 14(3): 363-365. doi: 10.3969/j.issn.1000-8527.2000.03.020