Genesis of Garnet-Bearing Granites in UHP Terrane of Dabie-Sulu Orogenic Belt, Central China
-
摘要: 大别—苏鲁超高压地体中的面理化花岗岩因为常含石榴石而被简称为含榴花岗岩, 其岩石类型主要为二长花岗岩、花岗岩和微斜长石花岗岩, 岩石具有花岗结构和片麻状构造.详细的野外地质研究表明, 超高压片麻岩作为超高压榴辉岩的围岩与含榴花岗岩呈渐变过渡关系, 或在含榴花岗岩中呈与面理平行的残留条带, 体现超高压片麻岩通过构造置换和部分熔融向含榴花岗岩转化.含榴花岗岩在常量元素的总体组成上, w(SiO2)为71.73%~79.15%;A/CNK为0.83~1.09, 平均0.98, 为准铝质; w(K2O+Na2O)为6.15%~9.00%, w(K2O)/w(Na2O)为0.16~1.54(绝大多数集中在0.9~1.1), 具有相对弱富钠-弱富钾特征.从标准矿物组成上看, 大别含榴花岗岩主要相当于奥长花岗岩; 山东含榴花岗岩主要相当于花岗岩; 东海含榴花岗岩主要相当于钾质花岗岩.在微量元素特征上, 含榴花岗岩的∑REE、∑LREE明显富集, δEu具有明显的负异常, 在原始地幔标准化蛛网图上, 相对亏损Nb、Ta、P、Zr、Ti等高场强元素及大离子亲石元素Sr, 富集Ba、La、Nd、Y、K等大离子亲石元素, 结合其贫w(Al)(平均11.6%)富w(Ga)(> 17×10-6)、(Fe/Mg)M(1.087~20.330)等特征, 表明其地球化学特征相当于非造山的A型花岗岩.结合前人超高压变质作用和构造演化等研究成果, 可以推断含榴花岗岩是超高压地体折返到中下地壳, 在底侵、构造体制转换等因素作用下, 由高压片麻岩的部分熔融形成的.含榴花岗岩在大别—苏鲁不同区域上的规律变化, 表明东海含榴花岗岩的出露相对于大别更低位.Abstract: Dabie-Sulu UHP terrane, central China, extends from western Tongbai Mountains through the Dabie Mountains to Sulu. The garnet-bearing granites account for more than 85% in volume in the UHP units, with a mineral assemblage of Or+Ab+Q+Bi+Mc+Grt+Zr+Ep+Ae+Hb. In some profiles where larger eclogute bodies occurred, there is a gradual transition from eclogite →amphibolite (frequently with symplecites of plagioclase+ amphibole) →garnet-bearing gneisses→garnet-bearing granite. The gneisses occur as relics or bands of several centimeters to several meters in the garnet-bearing granites. The bands are parallel to the foliation of garnet-bearing granites. All these spatial distributions result from the partial melting and transformation of structural regime. The garnet-bearing granites have w(SiO2)=71.73%-79.15%; A/CNK=0.83-1.09; w(K2O+Na2O)=6.15%-9.00%, w(K2O)/w(Na2O)=0.16-1.54. They are in the range of weakly peralkaline to weakly peraluminous series. In trace elements, the garnet-bearing granites have w(Zr)/w(Hf)=20.40~48.99 (averaging 35.13), w(Nb)/w(Ta)=6.93-22.28 (averaging 13.24), w(Zr)/w (Nb)=7.42-226.82 (averaging 37.34), and w(∑REE) =56.61×10-6-795.58×10-6. All samples of the garnet-bearing granites show obvious Eu negative (anomaly). While in primitive mantle-normalized spider diagram, the garnet-bearing granites are relatively rich in K, Ba, Pb, Nd, Y and La and relatively depleted in Nb, Ta, Sr, Ti, Zr and P. Combined with another characteristics such as high SiO2, (K2O+Na2O), Ga and low Al2O3, CaO, MgO, the garnet-bearing foliated granites are similar to A-type granites. From Dabie to Sulu, the content of SiO2, (K2O+Na2O), ∑REE, Ga and the ratios of w(K2O)/w(Na2O), (Fe/Mg)M and w(Zr)/w(Hf) increase gradually; the content of Al2O3, CaO, MgO, Sr and the ratio of w(Nb)/w(Ta) decrease gradually. The emplacement level for garnet-bearing granites in Sulu is lower than that in Dabie.
-
Key words:
- garnet-bearing granite /
- genesis /
- A-type granite /
- UHP terrane /
- Dabie-Sulu
-
图 7 苏鲁面理化含榴花岗岩Ga/Al—Ce, Rb, Zr, Y成因图解(Whalen et al., 1987)
●大别; ▲山东; ★东海; A.A型花岗岩; B.I或S型花岗
Fig. 7. Ga/Al vs. Ce, Rb, Zr, Y diagram for garnet-bearing granites in Dabie-Sulu
表 1 各类典型花岗岩平均成分与大别—苏鲁含榴花岗岩成分
Table 1. Average compositions of various granite types and garnet-bearing granites in Dabie-Sulu
-
[1] Carswell, D. A., O'Brien, P. J., Wilson, R. N., et al., 1997. Thermobarometry of phengite-bearing ecologites in the Dabie Mountains of central China. Lithos. , 15: 239-252. doi: 10.1111/j.1525-1314.1997.00014.x [2] Carswell, D. A., Wilson, R. N., Zhai, M., 1996. Ultra-high pressure aluminous titanites in carbonate-bearing ecologites at Shuanghe in the Dabieshan. Minerl. Mag. , 60: 781-798. [3] Cheng, Y. Q., Liu, D. Y., Williams, I. S., et al., 2000. SHRIMP U-Pb dating of zircon of a dark-coloured eclogite and a garnet-bearing gneissic-granitic rock from Bixiling, eastern Dabie area. Acta Geologica Sinica, 74: 193-205 (in Chinese with English abstract). [4] Clemens, J. D, 1986. Origin of an A-type granite: Experimental constraints. American Mineralogist, 7: 317-324. [5] Collins, W. J., 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust: Evidence from the Caelundi complex, eastern Australia. Oxford University Press, London. [6] Collins, W. J., 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80: 189-200. doi: 10.1007/BF00374895 [7] Eby, G. N., 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos., 26: 115-134. doi: 10.1016/0024-4937(90)90043-Z [8] Gao, S., Qiu, Y. M., Ling, W. L., et al., 2002. SHRIMP signal zircon U-Pb geochronology of eclogite from Ying-shan and Xiongdian. Earth Science—Journal of China University of Geosciences, 27(5): 559-562 (in Chinese with English abstract). doi: 10.1007/s11769-002-0045-5 [9] Liu, F. L., Xu, Z. Q., Yang, J. S., et al., 2001. UHP metamorphism of gneisses from the pre-pilot drillhole CCSD-PP2 in the North of Jiangsu Province, China: Evidence from mineral inclusion in zircons. Chinese Science Bulletin, 46: 241-245 (in Chinese). [10] Liu, J. B., Wu, Y., Guo, L. J., 1997. The relationship between eclogites and their host gneisses: Evidences from the study of microinclusions in accessary minerals from the gneiss. Chinese Science Bulletin, 42(23): 2531-2534 (in Chinese). doi: 10.1360/csb1997-42-23-2531 [11] Liu, X. C., Dong, S. W., Qian, C. C., et al., 2001. Gneissic granite did not experience UHP metamorphism from Bixiling, the Dabie Mountains. Bulletin of Mineralogy, Petrology and Geochemistry, 20: 21-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH200101005.htm [12] Robert, A. C., 1991. A-type granites revisited: Assessment of a residual-source model. Geology, 19: 163-166. doi: 10.1130/0091-7613(1991)0192.3.CO;2 [13] Sun, H. T., Wang, R. C., Xu, J. S., et al., 2002. Mineral chemistry and geochemical characteristics of metagranitoids from the UHP metamorphic belt, East Dabie Mountains and their geological significance. Geological Journal of China Universities, 8: 25-39 (in Chinese with English abstract). [14] Suo, S. T., Zhong, Z. Q., Zhang, H. F., et al., 2001. High-pressure metamorphic belt and its tectonic pattern in Tongbai Mountains, central China. Earth Science—Journal of China University of Geosciences, 26(6): 551-558 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200106000.htm [15] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407-419. doi: 10.1007/BF00402202 [16] Xu, S. T., Wu, W. P., Su., W., et al., 1998. Meta-granites in eclogite belt and its implication in eastern Dabieshan. Acta Petrologica Sinica, 14: 42-59 (in Chinese with English abstract). [17] Zhong, Z., Suo, S., You, Z., et al., 2001. Major constituents of the Dabie collisional orogenic belt and partial melting in the ultra-pressure unit. International Geology Review, 43: 226-236. doi: 10.1080/00206810109465010 [18] 程裕淇, 刘敦一, Williams, I. S., 等, 2000. 大别山碧溪岭深色榴辉岩和片麻状花岗质岩石SHRIMP分析. 地质学报, 74: 193-205. doi: 10.3321/j.issn:0001-5717.2000.03.001 [19] 高山, Qiu Yumin, 凌文黎, 等, 2002. 大别山英山和熊店榴辉岩单颗粒锆石SHRIMP U—Pb年代学研究. 地球科学——中国地质大学学报, 27(5): 559-562. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201504003.htm [20] 刘福来, 许志琴, 杨经绥, 等, 2001. 中国苏北先导孔CCSD-PP2片麻岩中锆石的矿物包裹体及其超高压变质作用的证据. 科学通报, 46: 241-245. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200103013.htm [21] 刘景波, 吴颖, 国连杰, 1997. 榴辉岩和围岩片麻岩之间的关系. 科学通报, 42(23): 2531-2534. doi: 10.3321/j.issn:0023-074X.1997.23.016 [22] 刘晓春, 董树文, 钱存超, 等, 2001. 大别山碧溪岭未经历超高压变质的片麻状花岗岩. 矿物岩石地球化学通报, 20: 21-25. doi: 10.3969/j.issn.1007-2802.2001.01.005 [23] 孙海婷, 王汝成, 徐进士, 等, 2002. 大别山东段超高压变质中变质花岗岩的矿物化学和地球化学特征. 高校地质学报, 8: 25-39. doi: 10.3969/j.issn.1006-7493.2002.01.004 [24] 索书田, 钟增球, 张宏飞, 等, 2001. 桐柏山高压变质带及其区域构造型式. 地球科学——中国地质大学学报, 26(6): 551-558. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200106000.htm [25] 徐树桐, 吴维平, 苏文, 等, 1998. 大别山东部榴辉岩带中的变质花岗岩及其大地构造意义. 岩石学报, 14: 42-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB801.004.htm