Treatment on Acid Leaching Wastewater from K-Feldspar Powders
-
摘要: 钾长石粉经过硫酸或盐酸酸浸除铁后, 废液中含有大量的金属离子和游离酸.对废硫酸进行循环利用实验, 钾长石粉铁的浸出率达到88.3%.对酸浸废液进行蒸发结晶, 分别制备得到了纯度为94.1%的绿钾铁矾和74%的三氯化铁.用硫酸酸浸废液蒸发结晶后, 铁的回收率为70.0%, 钾的回收率为96.5%, 整个工艺无需高温, 无需加压, 操作简单, 具有高效、低能耗、低污染的特点, 表明用本项技术处理酸浸废液行之有效.分析认为, 废液呈强酸性、溶液中存在大量Fe2+、碱金属离子含量偏低是蒸发结晶过程中形成绿钾铁矾而不是黄钾铁矾的主要原因.Abstract: After sulfuric acid or hydrochloric acid leaching to remove iron from K-feldspar powders, the filtrate wastewater contains free acid and abundant useful metal ions such as iron. The leaching proportion of iron from K-feldspar powders is 88.3% after treated by the used sulfuric acid. With a purity of 94.1% and 74% respectively, voltaite crystal and solid FeCl3 have been produced by crystallizing in a lower temperature following the vaporization of the wastewater, with 70% iron and 96.5% potassium recovered. No need of high temperature and pressure, and with high efficiency, low energy loss and less pollution, this process proves its effectiveness. The strong acidity, Fe2+ and rather lower concentration of alkalis ions are responsible for voltaite, not jarosite, crystallizing from the acidic iron-bearing water.
-
Key words:
- K-feldspar /
- acidic wastewater /
- crystallizing /
- voltaite /
- ferric chloride
-
图 2 结晶体crys-rt差热曲线
热分析样品32 mg, 升温速度15 ℃/min, 走纸速度2 mm/min; 样品1214引自Beveridge and Day, 1979
Fig. 2. TDA analysis of crys-rt
表 1 钾长石粉酸浸废液及结晶后滤液的主要成分
Table 1. Compositions of wastewater
表 2 酸浸废液蒸发结晶实验
Table 2. Crystallization experiments of acidic wastewater
表 3 废硫酸循环利用除铁实验
Table 3. Recycle of sulfuric wastewater
表 4 合成绿钾铁矾晶胞参数a0
Table 4. Unit cell parameter of voltaite
表 5 酸浸废液蒸发结晶产物化学成分分析结果
Table 5. Chemical compositions of crys-rt and crys-95C
表 6 酸性废液中主要金属组分的回收率
Table 6. Recovery percentages of principal metallic components in wastewater
-
[1] Beveridge, D., Day, P., 1979. Charge transfer in mixed-valence solids: Part 9. Preparation, characterization, and optical spectroscopy of the mixed-valence mineral voltaite[aluminium pentairon(Ⅱ)tri-iron dipotassium dodecasulphate 18-hydrate] and its solid solution with cadmium(Ⅱ). J. Chem. Soc. Dalton Trans. , 4: 648-653. [2] Chen, J.Y., Yu, S.Q., Wu, Z.C., 1991. Separation and Application of iron in hydrometallurgy industry. Metallurgy Industry Press, Beijing, 93-103(in Chinese). [3] Guiyang Institute of Geochemistry, CAS. A handbook of XRD identification of minerals. Science Press, Beijing, 165(in Chinese). [4] Grohol, D., Nocera, D.G., 2002. Magnetic minerals made from scratch. Science, 295: 1797. [5] Huang, B.L., 1987. A handbook of differential thermal analysis of minerals. Science Press, Beijing, 203-439(in Chinese). [6] Sondi, I., Shi, S., Matijevi, E., 2001. Precipitation of monodis-persed basic iron(Ⅲ)sulfate(sodium jarosite)particles. Colloid Polymer Sciences, 279: 161-165. doi: 10.1007/s003960000401 [7] Shum, M., Lavkulich, L., 1999. Speciation and solubility relationships of Al, Cu and Fe in solutions associated with sulfuric acid leached mine waste rock. Environmental Geology, 38(1): 59-68. doi: 10.1007/s002540050401 [8] The Editorial Committee of Metal and Other Useful Components Extraction from Solution, 1995. Metal and other useful components extraction from solution. Metallurgy Industry Press, Beijing, 398-399(in Chinese). [9] Wang, Z.M., Ma, X.F., Sun, W.T., et al., 1995. Study on acidic purification of diatomite and comprehensive utilization of wastewater. Non-metallic Mines, 1: 16-19(in Chinese with English abstract). [10] Yang, Y.Q., Tian, H., Wang, H., 1994. Experiment of producing FeCl3from acidic leaching water using a non-chlorine oxidation method. Environmental Protection of Chemical Industry, 14(2): 88-91(in Chinese with English abstract). [11] You, Z.M., 1990. A method of recovery of sulfuric acid leaching water. Chinese Patent, CN104353A. [12] Zheng, J., Ma, H.W., Chen, H., et al., 2001. Experimental research into iron removal from K-feldspar powder by acid leaching. Earth Science—Journal of China University of Geosciences, 26(6): 657-666(in Chinese with English abstract). [13] Zinck, J. M, Dutrizac, J.E., 1998. The behavior of zinc, cadmium, thallium, tin and selenium during ferrihydrite precipitation from sulphate media. CIM Bulletin, 91(1019): 94-101. [14] 陈家镛, 于淑秋, 伍志春, 1991. 湿法冶金中铁的分离与应用. 北京: 冶金工业出版社, 93-103. [15] 黄伯龄, 1987. 矿物差热分析鉴定手册. 北京: 科学出版社, 203-439. [16] 《溶液中金属及其他有用成分的提取》编委会, 1995. 溶液中金属及其他有用成分的提取. 北京: 冶金工业出版社, 398-399. [17] 王泽民, 马小凡, 孙文田, 等, 1995. 酸法提纯硅藻土及废酸综合利用研究. 非金属矿, 1: 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK501.002.htm [18] 杨运泉, 田皓, 王浩, 1994. 酸洗废液非氯氧化法生产三氯化铁工业实验. 化工环保, 14(2): 88-91. https://www.cnki.com.cn/Article/CJFDTOTAL-HGHB402.005.htm [19] 由正明, 1990. 硫酸酸洗废液再生的工艺方法. 中国专利, CN104353A. [20] 郑骥, 马鸿文, 陈煌, 等, 2001. 钾长石粉酸浸除铁的实验研究. 地球科学———中国地质大学学报, 26(6): 657-666. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200106016.htm [21] 中国科学院贵阳地球化学所, 1978. 矿物X射线粉晶鉴定手册. 北京: 科学出版社, 165.