Preliminary Study on Ancient Human DNA from Yangshao Culture
-
摘要: 近20年来, 古DNA研究技术和方法已迅猛发展.目前从古人类残骸中获取DNA序列, 进而讨论人类的演化、亲缘关系和迁移成为分子人类学的一个重要方向.本研究对采自陕西临潼仰韶文化6 000多年前的姜寨遗址第一期和第二期文化层中的古人类残骸进行古DNA提取、扩增和测序, 获得了169 bp的线粒体高变控制区Ⅰ的古DNA片段, 与现代西安人同源性序列有2个位点的突变.另外, 通过在不同实验室进行重复性实验和系统发育分析等方法详细地论证了所获得的DNA序列的可靠性.在所研究的6个姜寨遗址样品中有3个样品获得古DNA序列, 古DNA的提取成功率为50%, 高于一般的古DNA研究材料的提取率, 说明姜寨遗址的人类残骸是研究古DNA的理想材料, 为今后从分子水平上研究姜寨遗址及其他同地区仰韶文化遗址的古人类墓葬及中国古人类分子演化关系奠定了基础.Abstract: During recent 20 years, the field of ancient DNA research has experienced a rapid development. Authentic DNA sequences from ancient human remains have provided very important information on human evolution, blood relationship and migration, making ancient DNA research an important field of molecular anthropology. This study illustrates ancient DNA extraction, amplification and sequencing of 6 000-year-B.P. Yangshao Culture ancient human remains collected from first and second phase culture beds at Jiangzhai Site, Lintong, Shaanxi Province. Three 169 bp fragments from the hypervariable region Ⅰ in the mitochondrial genome have been obtained and authenticated. These ancient DNA sequences carry two point mutations in comparison with homologeous sequence of the modern Xi'an people's. Moreover, the authenticity of the ancient DNA sequence was obtained through the replication experiments in two different laboratories in China University of Geosciences and Zhongshan University as well as phylogenetic analysis. Among the 6 samples from the Jiangzhai Site, three of them yielded authenticated ancient DNA sequence. The 50% success ratio is higher than that of general ancient DNA research materials previously reported in the literature, indicating the potential for further ancient DNA studies on human remains of Yangshao Culture for the purpose of blood relationship among different archaeological sites and human evolution.
-
Key words:
- archaeology /
- Yangshao Culture /
- Jiangzhai Site /
- ancient DNA /
- authenticity analysis
-
图 2 姜寨人线粒体D-环区高变区Ⅰ DNA片段的对位排列分析
点号代表与姜寨人相同的位点; 短线代表缺失位点, 位点数字是根据人类线粒体系统编排; Yangshao.姜寨人(本研究); Taiwan.台湾兰屿岛雅美族土著人种(基因库编号: AJ512135.1);Mongolia.现代蒙古人(HSU33399) (Kolman et al., 1996); Xianwang.现代西安人(AB048131.1) (Oota et al., 2002); Somalia.现代非洲索马里人(U94161) (Watson et al., 1996); Slovakia.现代东欧斯洛伐克人(AJ240288);Israel.现代以色列人(AF258446) (Macaulay et al., 1999); Indian.现代印度人(AJ234979);Neandertal.尼安德特人(AF011222) (Krings et al., 1997); Chimpanzee.非洲黑猩猩(AF176755) (Goldberg and Ruvolo, 1997)
Fig. 2. Sequence alignment of hypervariable region Ⅰ DNA sequences in mitochondrial D-loop region of Jiangzhai people
图 3 用简约法构建的姜寨人线粒体D-环区高变区Ⅰ的系统树(数字代表自展支持率, 其余代号同图 2)
Fig. 3. Phylogenetic tree based on hypervariable region Ⅰ DNA sequences in mitochondrial D-loop region of Jiangzhai people using maximum parsimony with exhaustive search
表 1 样本采集及实验结果
Table 1. Sampling description and experimental results
-
[1] Cui, Y. Q., Duan, R. H., Ji, C. N., etal., 2002. Analysis of mi- tochondrial from ancient ruins of Jiaohe. Chemical Journal of Chinese Universities, 8: 1510-1514 (in Chinese with English abstract). [2] Gao, Q., Lee, Y. K., 1993. A biological perspective on Yangshao Kinship. Journal of Anthropological Archaeology, 12 (3): 226-298. [3] Goldberg, T. L., Ruvolo, M., 1997. Molecular phylogenetics and historical biogeography of East African chimpanzees pan troglodytes schweinfurthii. Biol. J. Linn. Soc. Lond., 61 (3): 301-324. doi: 10.1111/j.1095-8312.1997.tb01794.x [4] Herrmann, B., Hummel, S., 1994. Ancient DNA. Springer-Ver-lag, New York. [5] HÖss, M., Jaruga, P., Zastawnj, T. H., etal., 1996. DNA dam-age and DNA sequence retrieval from ancient tissues. Nu-cleic Acids Research, 24: 1304-1307. doi: 10.1093/nar/24.7.1304 [6] Institute of Archaeology, 1991. δ14C dating data (1965—1991) of Chinese archaeology. Wenwu Press, Beijing, 262-263 (in Chinese). [7] Kolman, C. J., Sambuughin, N., Bermingham, E., 1996. Mito-chondrial DNA analysis of Mongolian populations and im-plications for the origin of New World founders. Genetics, 142 (4): 1321-1334. doi: 10.1093/genetics/142.4.1321 [8] Krings, M., Stone, A., Schmitz, R. W., et al., 1997. Neanderthal DNA sequences and the origin of modern humans. Cell, 90 (1): 19-30. doi: 10.1016/S0092-8674(00)80310-4 [9] Lai, X. L., 2001. Ancient biomolecules and molecular archaeolo-gy—A review. Advance in Earth Sciences, 16 (2): 163-171 (in Chinese with English abstract). [10] Lin, Q., Shi, S. H., Peng, P. A., et al., 2002. DNA extracted from plant materials buried inperennial frozen sediments. Journal of Glaciology and Geocryology, 24 (1): 28-31 (in Chinese with English abstract). [11] Lindahl, T., 1997. Facts and artifacts of ancient DNA. Cell, 90: 1-3. doi: 10.1016/S0092-8674(00)80306-2 [12] Macaulay, V., Richards, M., Hickey, E., et al., 1999. Thee merging tree of West Eurasian mtDNAs: A synthesis of con-trol -region sequences and RFLPs. Am. J. Hum. Genet., 64 (1): 232-249. doi: 10.1086/302204 [13] Oota, H., Kitano, T., Jin, F., et al., 2002. Extreme mtDNA homogeneity in continental Asian populations. Am. J. Phys. Anthropol, 118 (2): 146-153. doi: 10.1002/ajpa.10056 [14] Ovchinnikov, I. V., Götherström, A., Romanova, G. P., 2000. Molecular analysis of Neandertal DNA from the northern Caucasus. Nature, 404: 490-493. doi: 10.1038/35006625 [15] Poinar, H. N., 1999. DNA from fossils: The past and the future. Acta Paediatrica, 88: 133-140. doi: 10.1111/j.1651-2227.1999.tb14423.x [16] Poinar, H. N., 2003. The top 10 list: Criteria of authenticity for DNA from ancient and forensic samples. International Con-gress Series, 1239: 575-579. doi: 10.1016/S0531-5131(02)00624-6 [17] Poinar, H. N., Höss, M., Bada, J. L., et al., 1996. Amino acid racemization and the preservation of ancient DNA. Science, 272: 864-866. doi: 10.1126/science.272.5263.864 [18] Thomas, W. K., Pääbo, S., Villablanca, F. X., et al., 1990. Spa-tial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum specimens. J. Mol. Evol., 31: 101-112. doi: 10.1007/BF02109479 [19] Wan, C., Cui, Y. Q., Duan, R. H., et al., 2001. Extraction, am-plification and sequence analysis of Xiajiadian ancient hu-man bone DNA. Chinese Journal of Biochemistry and Mo-lecular Biology, 17 (5): 636-641 (in Chinese with English abstract). [20] Wang, L., Oota, H., Saitou, N., et al., 2000. Genetic structure of a 2 500-year-old human population in China and its spa-tiotemporal changes. Mol. Biol. Evol., 17 (9): 1396-1400. doi: 10.1093/oxfordjournals.molbev.a026422 [21] Watson, E., Bauer, K., Aman, R., et al., 1996. mtDNA se-quence diversity in Africa. Am. J. Hum. Genet., 59 (2): 437-444. [22] Wayne, R. K., Leonard, J. A., Cooper, A., 1999. Full of sound and fury: The recent history of ancient DNA. Annu. Rev. Ecol. Syst., 30: 457-477. doi: 10.1146/annurev.ecolsys.30.1.457 [23] Xi'an Banpo Site Museum, Shaanxi Provincial Archaeology Insti-tute, Lintong County Museum, 1988. Excavation report of Jiangzhai—A Neolithic archaeological site. Wenwu Press, Beijing (in Chinese). [24] Yang, H., 1995. Authentication of ancient DNA sequence—A reassessment of 18S rDNA sequence from fossil dinosaur egg. Acta Palaeontologica Sinica, 34 (6): 657-673 (in Chinese with English abstract). [25] Yang, H., Golenberg, E. M., Shoshani, J. A., 1997. Blind tes-ting design for authenticating ancient DNA sequence. Mo-lecular Phylogenetics and Evolution, 7: 261-265. doi: 10.1006/mpev.1996.0398 [26] Yang, Q., Ozawa, T., Hayashi, S., et al., 1999. Extraction, PCR amplification and cloning of aDNA from human remains of the warring states (475B. C-221B. C). Palaeoworld, 12: 12-24. [27] Yang, S. J., Lai, X. L., 2003. The first case of Mammoth an cient DNA in China. Earth Science—Journal of China University of Geosciences, 28 (2): 136, 142 (in Chinese with English abstract). [28] 崔银秋, 段然慧, 季朝能, 等, 2002. 交河故城车师人的线粒体DNA分析. 高等学校化学学报, 8: 1510-1514. doi: 10.3321/j.issn:0251-0790.2002.08.010 [29] 中国社会科学院考古所, 1991. 中国考古学中碳十四年代数据1965—1991. 北京: 文物出版社, 262-263. https://www.cnki.com.cn/Article/CJFDTOTAL-KAGU198403015.htm [30] 赖旭龙, 2001. 古代生物分子与分子考古学. 地球科学进展, 16 (2): 163-171. doi: 10.3321/j.issn:1001-8166.2001.02.004 [31] 林清, 施苏华, 彭平安, 等, 2002. 青藏高原多年冻土沉积物中埋藏植物DNA特征的初步分析. 冰川冻土, 24 (1): 28-31. doi: 10.3969/j.issn.1000-0240.2002.01.004 [32] 万诚, 崔银秋, 段然慧, 等, 2001. 夏家店等古人骨DNA的提取、扩增及序列分析. 中国生物化学与分子生物学报, 17 (5): 636-641. doi: 10.3969/j.issn.1007-7626.2001.05.018 [33] 西安半坡博物馆, 陕西省考古研究所, 临潼县博物馆, 1988. 姜寨-新石器时代遗址发掘报告. 北京: 文物出版社. [34] 杨洪, 1995. 古代DNA序列的分析与甄别———兼评恐龙DNA研究. 古生物学报, 34 (6): 657-673. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX506.000.htm [35] 杨淑娟, 赖旭龙, 2003. 中国第一例猛犸象古DNA研究. 地球科学———中国地质大学学报, 28 (2): 136, 142.