Mountain Building and Its Dynamic Transition Since Middle Pleistocene in East of Eastern Kunlun, Northeast Tibet Plateau
-
摘要: 对东昆仑造山带东段第四纪构造及与地貌关系的分析表明, 现代山盆相间的地貌格局成型于中更新世, 且在中更新世以来发生了多次构造变形体制的转换.根据布青山北部查干额热格地区第四系剖面的构造、地层时代及地层与构造关系的分析表明, 中更新世时期为伸展构造体制, 昆仑山内部开始发生了差异隆升, 布青山开始崛起.中更新世末应力体制发生急剧变化, 由伸展体制转为收缩事件, 又急速转为伸展构造体系, 短暂的收缩事件造成了中更新世冲洪积层的褶皱, 随后的伸展则导致了影响深刻的向北依次断落的阶地状正断层系统.晚更新世应力体系再度发生重大转换, 伸展正断层体系被左旋走滑运动体系所代替, 并一直延续至今.中更新世以来多次隆升构造变形体制的转换说明东昆仑地区的成山过程受控于多种动力背景, 而非单一的挤压抬升.隆升构造变形体系的确定及其时代约束为深入刻划青藏高原东北缘隆升作用的动力过程提供了重要信息.Abstract: The analysis of the relationship between the Quaternary structure and the relief in the east of eastern Kunlun reveals that the modern relief framework with alternating basins and ridges were formed in the Middle Pleistocene. Multiple deformation system changes have occurred since that time based on the analysis of the structures, strata age and the relationship between structures and rocks from a well displayed Quaternary cross section. In the Middle Pleistocene, the N S extension caused differential uplifting in the Kunlun Mountains. The Buqingshan and Buerhanbudashan popped up the plateau plane. At the end of the Middle Pleistocene, the stress system changed quickly from N S extension to N S compression, then to extension again. The short N S compression event caused folding of the Middle Pleistocene strata on the northern side of Buqingshan, and southward, the thrust folding on its southern side. Soon after the compression event, the N S extension appears again, leading to the step normal faults on the northern side of the Buqingshan and the graben horst assemblage, which overprinted to the previous thrust fold assemblage in the Tertiary Guide Group of the southern slope of the Buqingshan. While in the Late Pleistocene, an important change occurred again in the stress system. The E W transpressive sinistral strike slip faults became active and has remained till now. The multiple age stress change during Quaternary suggests that the uplift mechanism and the mountain building processes are multiplex and complex.
-
Key words:
- east part of the eastern Kunlun /
- Quaternary /
- uplift structure /
- mountain building
-
图 2 布青山南坡新第三系贵德群构造剖面(剖面位置见图 1A-A′剖面)
1.砾岩; 2.砂岩; 3.粉砂岩; 4.粉砂质泥岩; 5.第四系砂砾岩; 6.正断层; 7.逆冲断层; P—Tm.二叠系—三叠系布青山群马尔争组; NG.新第三系贵德群: NG1.新第三系贵德群下组; NG2.新第三系贵德群上组; Q.第四系
Fig. 2. Cross section of Guide Group along the south edge of the Buqingshan
图 3 布青山北坡红水川南部查干额热格第四系构造剖面(剖面位置见图 1B-B′剖面)
1.上更新统冲洪积; 2.中更新统冲洪积; 3.二叠系—三叠系马尔争组; 4.砂岩; 5.粉砂质板岩; 6.半固结含砂砾石层; 7.半固结砂质层; 8.紫红色粉砂质泥质层标志层; 9.松散砾石层; 10.正断层; 11.高角度左旋走滑断层
Fig. 3. Quaternary cross section at Chagan′e′rege, north side of the Buqingshan
图 4 红水川南部查干额热格第四系实测剖面HSC、HSCS综合柱状剖面
(实测剖面位置见图 1所示)
Fig. 4. Synthesized stratigraphic column based on detail-measured sections
-
[1] 钟大赉, 丁林. 青藏高原的隆升过程及其机制探讨[J]. 中国科学(D辑), 1996, 26 (4): 289-295. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW199711001345.htmZhong D L, Ding L. Rising process of the Qinghai-Xizang (Tibet) plateau and its mechanics[J]. Science in China (Series D), 1996, 26 (4): 28-295. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW199711001345.htm [2] 王成善, 丁学林. 青藏高原隆升研究新进展综述[J]. 地球科学进展, 1998, 13 (6): 526-5.Wang C S, Ding X L. The new researching progress of Tibet plateau uplift[J]. Advance in Earth Sciences, 1996, 26 (4): 28-295. [3] 吴锡浩, 安芷生. 黄土高原黄土-古土壤序列与青藏高原隆升[J]. 中国科学(D辑), 1996, 26 (2): 103-110. doi: 10.3321/j.issn:1006-9267.1996.02.001Wu X H, A Z S. Loess-paleosol sequence on loess plateau and uplift of the Qinghai-Xizang plateau[J]. Science in China (Series D), 1996, 26 (2): 103-110. doi: 10.3321/j.issn:1006-9267.1996.02.001 [4] 吴锡浩, 王富葆, 安芷生, 等. 晚新生代青藏高原隆升的阶段和高度[A]. 见: 刘东生, 安芷生, 主编. 黄土高原第四纪地质全球变化, 第三集[C]. 北京: 科学出版社, 1992.1-13.Wu X H, Wang F B, An Z S, et al. Stage and altitude of uplift of the Qinghai-Xizang plateau in the Late Cenozoic [A]. In: Liu D S, An Z S, eds. Change of the whole world in Quaternary period geology, Vol. 3[C]. Beijing: Science Press, 1992.1-13. [5] 李吉均, 方小敏, 马海州, 等. 晚新生代黄河上游地貌演化与青藏高原隆起[J]. 中国科学(D辑), 1996, 26 (4): 316-322. doi: 10.3321/j.issn:1006-9267.1996.04.005Li J J, Fnag X M, Ma H Z, et al. Geomorphological and environmental evalution in the upper reaches of the Yellow River during the Late Cenozoic[J]. Science in China (Series D), 1996, 26 (4): 316-322. doi: 10.3321/j.issn:1006-9267.1996.04.005 [6] 许志琴, 姜枚, 杨经绥. 青藏高原北部隆升的深部构造物理作用——以"格尔木-唐古拉山"地质及地球物理综合剖面为例[J]. 地质学报, 1996, 70 (3): 195-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199603000.htmXu Z Q, Jiang M, Yang J S. Tectonophysical process at depth for the uplift of the northern part of Qinghai-Tibet plateau: illustrated by the geological and geophysical comprehensive profile from Golmud to the Tanggula mountains, Qinghai Province, China[J]. Acta Geologica Sinica, 1996, 70 (3): 195-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199603000.htm [7] 王国灿, 梁斌, 张天平, 等. 造山带非史密斯地层的构造复位——东昆仑造山带研究实践[J]. 中国区域地质, 1998, 增刊: 25-30.Wang G C, Liang B, Zhang T P, et al. Tectonic restore of non-Smithian stratigraphy in orogenic belt — study practice in east of Kunlun orogenic belt[J]. Regional Geology of China, 1998, (Suppl): 25-30. [8] 李长安, 殷鸿福, 于庆文. 东昆仑山构造隆升与水系演化及其发展趋势[J]. 科学通报, 1999, 44 (2): 211-213.Li C A, Yin H F, Yu Q W. Evalution of drainage systems and its devoleping rend in annection with tectonic uplift of eastern Kunlun Mt. Chinese Science Bulletin, 1999, 44 (2): 211-213. [9] 崔之久, 伍永秋, 刘耕年. "昆仑-黄河运动"的发现及其性质[J]. 科学通报, 1997, 42 (18): 1986-1989. doi: 10.3321/j.issn:0023-074X.1997.18.019Cui Z J, Wu Y Q, Liu G N. Discovery and character of the Kunlun-Yellow River Movement[J]. Chinese Science Bulletin, 1997, 42 (18): 1986-1989. doi: 10.3321/j.issn:0023-074X.1997.18.019 [10] 崔之久, 高全洲, 刘耕年, 等. 夷平面、古岩溶与青藏高原隆升[J]. 中国科学(D辑), 1996, 26 (4): 378-386. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604014.htmCui Z J, Gao Q Z, Liu G N, et al. Planation surfaces, palaeokarst and uplift of Xizang (Tibet) plateau[J]. Science in China (Series D), 1996, 26 (4): 378-386. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604014.htm [11] 殷鸿福, 张克信. 中央造山带的演化及其特点[J]. 地球科学——中国地质大学学报, 1998, 23 (5): 437-441.Yin H F, Zhang K X. Evolution and characteristics of the central orogenic belt[J]. Earth Science — Journal of China University of Geosciences, 1998, 23 (5): 437-441. [12] Wang G C, Yang W R. Accelerated exhumation during Cenozoic in the Dabie Mountains: evidence from fission-track ages[J]. Acta Geologica Sinica, 1998, (4): 409-419. [13] Dewey J F, Shackleton R M, Chang C F, et al. The tectonic evolution of the Tibetan plateau[J]. Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1988, 327 (1594): 379-413. [14] Platt J P, England P C. Convective removal of lithosphere beneath mountain belts: thermal and mechanical consequences [L]. American Journal of Science, 1994, 294 (3): 307-336. [15] Owens T J, Zandt G. Implications of crustal property variations for models of Tibetan plateau evolution[J]. Nature, 1997, 387 (1): 37-43.