Cu-Mo-Au Metallogenesis and Minerogenetic Series during Superimposed Orogenesis Process in Gangdese
-
摘要: 2001年以前西藏冈底斯斑岩铜钼多金属成矿带未列入国家重要成矿区带,而随后的成矿、找矿理论认识和方法创新,致使该带找矿取得历史性重大突破,新发现与评价了驱龙、甲玛、朱诺、雄村、努日、冲江、邦浦、蒙亚啊、洞中松多、查个勒等一系列大型-超大型矿床,仅探明的铜资源量就超过5 600万吨,形成了我国规模最大的世界级铜多金属勘查开发基地;新发现的矿床主要分布在南部拉萨地体及弧背断隆带,空间上的分布表现出东西成带、北东成行、交汇成矿、近等间距分布的规律性;同位素资料展示5期斑岩成矿作用(213 Ma、173~165 Ma、~45 Ma、~30 Ma、17~13 Ma)、5期矽卡岩成矿作用(~112 Ma、~77 Ma、67~55 Ma、~41~37 Ma、~23~16 Ma)及2期浅成低温热液成矿作用(~126 Ma、~65~55 Ma);伴随着新特提斯洋的形成、俯冲、消减及印-亚陆陆碰撞,冈底斯带经历了增生造山、碰撞造山、陆内造山及均衡造山四大造山作用过程,揭示了含矿岩浆来源于不同时期俯冲的玄武质洋壳——以幔源物质为主、或以古老地壳为主、或以新生下地壳为主的部分熔融,形成了与不同造山作用相关的斑岩型-矽卡岩型-浅成低温热液型-岩浆热液脉型-热泉型等单一类型、或斑岩-矽卡岩-浅成低温热液型等多种类型复合的一系列Cu-Mo-W-Ag-Sn-Au多金属矿床;复合造山过程中不同造山作用的叠加,使矿床展现出同源多位、同位多因、深源浅成、多因复成的成矿特征,并据此划分出晚三叠世与大陆弧岩浆有关的斑岩Cu-Au、中侏罗世与岛弧岩浆作用有关的斑岩Cu-Au、早白垩世与中酸性岩浆有关的矽卡岩-浅成低温热液型Fe-Ag-Pb-Zn(-Sn)、晚白垩世与中酸性侵入岩有关的Fe-Cu多金属、古新世-始新世与中酸性侵入岩有关的Fe-Cu多金属、古新世与陆相(次)火山岩有关的Ag-Sn-Au多金属、渐新世斑岩-矽卡岩型Cu-W-Mo(-Au)、中新世斑岩-矽卡岩-浅成低温热液型Cu-Mo-Au-Pb-Zn-Ag、新生代热泉型Au-S-Cs矿床及盐类矿床等9大成矿系列;最后指出该带有待今后进一步深入研究与探索的科学问题,并预测朱诺矿集区仍有发现大-超大型斑岩铜矿床的潜力,将会成为冈底斯成矿带未来找矿最能取得重大突破的地区,为该带下一步的勘查工作部署与评价指明了方向.Abstract: The Gangdese copper-molybdenum polymetallic metallogenic belt in Tibet was not included in the national important metallogenic belts before 2001. However, the subsequent theoretical understanding and method innovation of mineralization and prospecting have led to a historic breakthrough in ore prospecting in this belt, newly finding of a series of large and super-large deposits such as Qulong, Jiama, Zhunuo, Xiongcun, Nuri, Chongjiang, Bangpu, Mengya'a, Dongzhongsongduo and Chagele. The proven copper resources alone exceed 56 million tons, forming the largest world-class copper polymetallic exploration and development base in China. The newly discovered deposits are mainly distributed in the southern Lhasa terrane and Gangdese back-arc fault uplift belt, and show the spatial distribution of east-west banding, parallel north-east and interjunction mineralization. The isotopic data show five-stage porphyry mineralization (213 Ma, 173-165 Ma, ~45 Ma, ~30 Ma, 17-13 Ma), five-stage skarn mineralization (~112 Ma, ~77 Ma, 67-55 Ma, ~41-37 Ma, ~23-16 Ma) and two-stage epithermal mineralization (~126 Ma, ~65-55 Ma). With the formation and subsequent subduction of the Neo-Tethys ocean, and India-Asia collision, the Gangdese belt has experienced four orogenic processes, including accretionary orogenesis, collisional orogenesis, intracontinental orogenesis and balanced orogenic process. The ore-bearing magma was derived from partial melting of basaltic oceanic crust dominated by mantle source material, or ancient crust, or juvenile lower crust during different periods, in which a series of Cu-Mo-W-Ag-Sn-Au polymetallic deposits have been formed including single types of porphyry, skarn, epithermal-hydrothermal vein, thermal spring deposits, or complex types of porphyry-skarn-epithermal deposits and so on. These deposits show the metallogenic characteristics of same source with multiple locations, same location with multiple genesis, deep source with shallow mineralization, as well as multiple genesis and complex formation, due to the superposition of different orogenies during superimposed orogenesis process. Therefore, nine minerogenetic series are classified: Late Triassic porphyry Cu-Au series related to arc-magmatism; Middle Jurassic porphyry Cu-Au series related to island arc magmatism; Early Cretaceous skarn-epithermal Fe-Ag-Pb-Zn(-Sn) series related to intermediate-acidic magma; Late Cretaceous Fe-Cu polymetallic series related to intermediate-acidic magma; Paleocene-Eocene Fe-Cu polymetallic series related to intermediate-acidic magma; Paleocene Ag-Sn-Au polymetallic series related to continental (sub) volcanic rocks; Oligocene porphyry-skarn Cu-W-Mo(-Au) series; Miocene porphyry-skarn-epithermal Cu-Mo-Au-Pb-Zn-Ag series; Cenozoic hydrothermal spring Au-S-Cs deposits and salt mineralization series. Finally it proposes some scientific questions that remains to be further study and exploration in Gangdese belt, and predictes that Zhunuo deposit cluster still has the potential of finding large- superlarge porphyry copper deposits, where a major breakthrough can be achieved in the future ore-prospecting in the Gangdese metallogenic belt, indicating directions for the further exploration deployment and evaluation.
-
Key words:
- orogenic stages /
- metallogenesis /
- minerogenetic series /
- geodynamic setting /
- Gangdese /
- Tibet /
- mineral deposit
-
图 1 青藏高原构造单元划分图
据Yin and Harrison(2000);JSSZ.金沙江缝合带;BNSZ.班公湖-怒江缝合带;SNMZ.狮泉河-永珠-嘉黎蛇绿混杂岩带;LMF.洛巴堆-米拉山断裂;IYZSZ.雅鲁藏布江缝合带
Fig. 1. Tectonic framework of the Tibetan plateau
图 2 冈底斯主要矿床分布(据Zheng et al., 2012修改)
1. 新近纪酸性-中酸性侵入岩;2. 古近纪酸性-中酸性侵入岩;3. 白垩纪酸性-中酸性侵入岩;4. 侏罗纪酸性-中酸性侵入岩;5. 三叠纪酸性-中酸性侵入岩;6. 中性侵入岩;7. 蛇绿岩;8. 火山岩;9. 地质界线;10.断裂构造
Fig. 2. The distribution of main deposits in Gangdese belt (modified from Zheng et al., 2012)
图 3 冈底斯铜多金属成矿带主要矿床类型与成矿时代(据Zheng et al., 2015修改)
Fig. 3. Types and mineralization ages of major ore deposits in the Gangdese copper polymetallic belt(modified from Zheng et al., 2015)
图 4 冈底斯主要斑岩铜矿床分布
据Zheng et al.(2015);郑有业等(2017)修改
Fig. 4. The distribution of main porphyry deposits in Gangdese belt
图 5 驱龙矿区地质矿产图
1.第四系冲积物、洪积物、冰碛物;2.泥质、粉砂质凝灰质板岩;3.流纹-英安质岩屑、晶屑凝灰岩;4.安山玢岩及英安岩;5.英安-安山质含火山角砾的晶屑、岩屑凝灰岩;6.灰岩;7.(斑状)黑云母二长花岗岩(包括花岗闪长斑岩,多呈过渡关系);8.花岗闪长岩;9.二长花岗斑岩;10.花岗斑岩;11.石英斑岩;12.流纹(斑)岩;13.河流铜染带;14.铜矿体及编号;15.正断层/逆断层;据郑有业等(2013)
Fig. 5. The geological and mineral resources map of Qulong deposit
图 6 驱龙16号勘探线剖面图
据西藏巨龙铜业有限公司,2008.西藏自治区墨竹工卡县驱龙矿区铜多金属矿勘查报告修改
Fig. 6. Cross section of No.16 exploration line in Qulong deposit
图 8 朱诺7号勘探线矿体剖面图(据Sun et al., 2018修编)
Fig. 8. The orebody profile of No.7 exploration line in Zhunuo deposit (modified from Sun et al., 2018)
图 10 冈底斯带斑岩Cu(-Mo-Au)矿化和斑岩Mo(-Cu)矿化相关侵入体的(a)87Sr/86Sr vs. εNd(t)和(b)锆石年龄vs. εHf(t)图解
数据来源:雄村(郎兴海,2012)、驱龙(王亮亮等,2006;杨志明等,2008)、吉如(Zheng et al., 2014a)、拉抗俄、达布、冲江(侯增谦等,2004)、沙让(Zhao et al., 2012)、汤不拉(王保弟等,2010)
Fig. 10. Plots of 87Sr/86Sr vs. εNd(t) (a) and U-Pb ages vs. εHf(t) (b) values of zircons for the intrusions associated with porphyry Cu(-Mo-Au) mineralization and porphyry Mo(-Cu) mineralization in the Gangdese belt
图 11 西藏主要斑岩矿床辉钼矿年龄vs. Re含量(a)和187Re vs. 187Os(b)对比图
数据来源:Zheng et al.(2015);郑有业等(2017)及刘洪等(2019c)
Fig. 11. Diagrams of ages vs. Re content (a) and 187Re vs. 187Os (b) of molybdenite from main porphyry deposits in Tibet
图 12 冈底斯铜多金属矿床动力学模型
a.俯冲背景;b.碰撞背景;c.后碰撞背景;据Zheng et al.(2015)修改
Fig. 12. Geodynamic models of Gangdese copper polymetallic deposits
表 1 冈底斯铜多金属成矿带主要矿床特征
Table 1. Main features of the major ore deposits in the Gangdese copper polymetallic belt
编号 矿床名称 资源量/品位 矿化类型 赋矿围岩 成矿年龄(Ma) 参考文献 1 驱龙 Cu: 2 434万吨,0.31%①
Mo: 167万吨,0.021%①斑岩型Cu-Mo 下侏罗统叶巴组火山岩和中新世花岗岩 15.36±0.21
15.82~16.85
16.41±0.48郑有业等(2013)
孟祥金等(2003a)
芮宗瑶等(2003)2 拉抗俄 斑岩型Cu-Mo 中新世花岗岩 13.5 芮宗瑶等(2004) 3 达布 Cu: 50万吨,0.31% 斑岩型Cu-Mo 始新世和中新世花岗岩 14.7±0.2 侯增谦等(2004)
Wu et al. (2016)4 厅宫 Cu: 69万吨,0.5% 斑岩型Cu-Mo 古新世-始新世林子宗火山岩及始新世花岗岩 15.5±0.4 芮宗瑶等(2004) 5 冲江 Cu: 50万吨,0.67% 斑岩型Cu-Mo 始新世花岗岩 14.9±0.7
14.0±0.2侯增谦等(2004) 6 吉如 Cu: 18万吨,0.43% 斑岩型Cu-Mo 始新世和中新世花岗岩 44.9±2.6
15.2±0.4Zheng et al. (2014a) 7 雄村 Cu: ~240万吨,0.4%
Au: ~200吨,0.4 g/t
Ag: ~1 500吨,2 g/t斑岩型Cu-Au 侏罗纪岩浆岩 173.2±4.7
161.5±2.7唐菊兴等(2010b) 8 牙瓦夹格 斑岩型Cu-Au 三叠纪石英二长斑岩 213.1±5.2、
212.0±3.7刘洪等(2019c)
Chen et al.(2020)9 朱诺 Cu:308.9万吨,0.57%
Au:44.4吨,0.13g/t
Ag:1 506.3吨,2.5g/t
Mo:6.3万吨,0.017%斑岩型Cu-Mo 中新世花岗岩 13.7±0.6 郑有业等(2007b) 10 次玛班硕 未评审 斑岩型Cu-Mo 中新世花岗岩 16.2±0.3 未刊资料 11 北姆朗 未评审 斑岩型Cu-Mo 中新世花岗岩 13.45±0.18 未刊资料 12 吹败子 未评审 斑岩型Mo-Cu 中新世花岗岩 20.7±0.6 芮宗瑶等(2004) 13 汤不拉 Mo: 20万吨,0.095% 斑岩型Mo-Cu 中新世花岗岩 20.9±1.3 王保弟等(2010) 14 德明顶 未评审 斑岩型Mo-Cu 侏罗统石英斑岩和中新世花岗岩 21.3±1.7 未刊资料 15 沙让 Mo: 6万吨,0.061% 斑岩型Mo 上二叠统蒙拉组碎屑岩及灰岩、始新世花岗岩类 51.0±1.0
53.3±1.4秦克章等(2008)
郑有业等(2008)16 甲玛 Cu: 500万吨,1.0%
Mo: 55万吨,0.06%
Au: 105吨,0.38 g/t
Pb+Zn: 56万吨,1.8%
Ag: 7 000吨,17.1 g/t斑岩-矽卡岩Cu多金属 上侏罗统夺底沟组灰岩与下白垩统林布宗组砂岩接触带 14.7±0.2
14.8±0.8
15.2±0.6应立娟(2011)
唐菊兴等(2011)
秦志鹏等(2011)17 邦浦 Pb: 61万吨,12.3%,
Zn: 19万吨,3.9%
Ag: 853吨,172 g/t
Mo: 45万吨,0.08%
Cu: 92万吨,0.28%斑岩-矽卡岩Pb-Zn多金属 下二叠统凝灰质板岩与灰岩接触带和中新世花岗岩类 15.3±0.8 王立强等(2011)
Zhao et al. (2014)18 明则-程巴 Cu: 5.1万吨,0.98%
Mo: 6.2万吨,0.098%斑岩-矽卡岩Cu-Mo 下白垩统变粉砂岩与三叠系砂质板岩 30.2±0.9 孙祥等(2013) 19 冲木达 矽卡岩型Cu-Au 渐新世花岗岩 37.63~41.19 李光明等(2006)
Zheng et al. (2012)20 努日 WO3:19.7万吨,0.223%
Cu: 55万吨,0.7%
Mo: 3.2万吨,0.067%矽卡岩型Cu-Mo-W 下白垩统砂岩和石灰岩 23.4±0.5 闫学义等(2010)
江化寨等(2011)21 知不拉 Cu: 41万吨,1.42%
Au:8.32吨,0.29 g/t
Ag:332.6吨,11.6 g/t矽卡岩型Cu 上侏罗统叶巴组凝灰岩和灰岩 16.9±0.6
17.50±0.69李光明等(2005b)
郑有业等(2013)22 亚贵拉 Pb: 45万吨,4.25%
Zn: 23万吨,2.15%
Ag: 1 000吨,95 g/t矽卡岩型Pb-Zn-Ag 上石炭统-下二叠统来姑组砂岩与灰岩接触带 65.0±1.9 李奋其等(2010)
高一鸣等(2011)23 洞中松多 Pb: 40万吨,2.5%
Zn: 36万吨,2.3%
Ag: 737吨,46 g/t
Cu: 3万吨,0.17%矽卡岩型Pb-Zn-Ag-Cu 中二叠统洛巴堆组凝灰岩与碳酸盐岩接触带 辛存林等(2013) 24 洞中拉 Pb: 9万吨,9.6%
Zn: 8万吨,8.9%
Ag: 109吨,163 g/t矽卡岩型Pb-Zn-Ag 中二叠统洛巴堆组板岩与碳酸盐岩接触带 费光春等(2010b) 25 龙马拉 Pb: 2.8万吨,14.6%
Zn: 1.2万吨,6.3%矽卡岩型Pb-Zn 中二叠统洛巴堆组板岩与碳酸盐岩接触带 56.3±0.5 Zheng et al.(2015) 26 蒙亚阿 Pb: 12万吨,2.1%
Zn: 37万吨,6.42%
Ag: 233吨,40 g/t
Cu: 1万吨,0.21%矽卡岩型Pb-Zn-Ag 中二叠统洛巴堆组凝灰岩与碳酸盐岩接触带 54.8±0.4 Zheng et al.(2015) 27 勒青拉 Pb + Zn: 55万吨,7.74% 矽卡岩型Pb-Zn 中二叠统洛巴堆组板岩与碳酸盐岩接触带 Zhang et al. (2008) 28 加拉普 矽卡岩型Fe-Cu 上三叠统麦隆岗组灰岩 63.4±0.5 付强等(2014) 29 加多捕勒 矽卡岩型Fe-Cu 古新世-始新世花岗岩 50.9±1.8 于玉帅等(2012a) 30 恰功 Fe矿石: 4 400万吨,33% 矽卡岩型Fe 古新世二长花岗岩与下白垩统灰岩 67.4±0.8
56.9±2.6李应栩等(2011) 31 尼雄 Fe矿石: 13 800万吨,60% 矽卡岩型Fe 中二叠统下拉组灰岩;上二叠统敌布错组碎屑岩 112.3 于玉帅等(2011a)
于玉帅等(2012b)32 纳如松多 Pb + Zn: 45万吨,12% 浅成低温热液型Ag-Pb-Zn 古新统-始新统林子宗火山凝灰岩和隐爆角砾岩 57.8±0.7 纪现华等(2014) 33 则学 Pb: 10万吨,4.5%
Zn: 3万吨,1.6%
Ag: 170吨,81 g/t浅成低温热液型Ag-Pb-Zn 古新统-始新统林子宗火山岩 本文 34 斯弄多 Pb: 14万吨,5.3%
Zn: 16万吨,6.0%浅成低温热液型Ag-Pb-Zn 花岗斑岩与下二叠统灰岩 60.9/63.0(伊利石坪年龄) 钱建平等(2013)
丁帅(2017)35 罗布真 未评审 浅成低温热液型Ag-Au-Pb-Zn 始新统林子宗火山岩与中新世花岗岩类 50.1±0.2/17.1±0.1(锆石U-Pb年龄);
21.1±1.8(石英脉Rb-Sr同位素等时线)Sun et al.(2017)
Huang et al.(2019)36 诺仓 未评审 矽卡岩型Pb-Zn-Cu 下二叠统昂杰组灰岩与矽卡岩接触带 59.83±0.61Ma(蚀变云母) 未刊资料 37 打加错 Pb+Zn: 10万吨,Pb: 3.23%,Zn: 3.52%;
Ag: 350吨,99.29g/t浅成低温热液型Ag-Pb-Zn 林子宗群古近系典中组火山岩 ~61(单个辉钼矿Re-Os) 未刊资料 38 北纳 未备案 浅成低温热液型Cu 林子宗群古近系典中组火山岩 ~64.6(锆石U-Pb年龄) Liu et al. (2019) 39 查个勒 Pb+Zn: 111万吨,Pb: 2.05%,Zn: 3.28% 斑岩-矽卡岩型Pb-Zn-Cu-Mo 中二叠统下拉组灰岩与花岗斑岩接触带 61.49±0.6 高顺宝等(2012) 40 帮布勒 Pb+Zn: 67万吨,Pb: 2.84%,Zn: 3.30% 矽卡岩型Pb-Zn-Cu-Mo 中二叠统下拉组灰岩和白垩纪中酸性侵入岩接触带 ~77(锆石U-Pb年龄) 田坎等(2019) 41 拔隆 未备案 浅成低温热液型Ag-Sn-Pb-Zn 下白垩统则弄群火山岩 ~126.5(锆石U-Pb年龄) 高顺宝等(2020) 42 弄如日 未备案 浅成低温热液型Au矿 上侏罗统-下白垩统林布宗红柱石角岩 19.7±0.3(蚀变绢云母) 黄瀚霄等(2012) 注:①西藏巨龙铜业有限公司, 2008-02至2018-07.西藏自治区墨竹工卡县驱龙矿区铜多金属矿资源储量核实报告;表中报道的成矿年龄除个别标注具体定年方法外,剩余的均为辉钼矿Re-Os定年结果. -
[1] Aitchison, J.C., Zhu, B.D., Davis, A.M., et al., 2000. Remnants of a Cretaceous Intra-Oceanic Subduction System within the Yarlung-Zangbo Suture (Southern Tibet). Earth and Planetary Science Letters, 183(1-2): 231-244. https://doi.org/10.1016/s0012-821x(00)00287-9 doi: 10.1016/S0012-821X(00)00287-9 [2] Chen, X., Zheng, Y.Y., Gao, S.B., et al., 2020. Ages and Petrogenesis of the Late Triassic Andesitic Rocks at the Luerma Porphyry Cu Deposit, Western Gangdese, and Implications for Regional Metallogeny. Gondwana Research, 85: 103-123. https://doi.org/10.1016/j.gr.2020.04.006 [3] Chen, Y.C., 1983. The Metallogenetic Series of the Rare-Earth, Rare and Nonferrous Metal Deposits Related to the Yenshanian Granites in South China. Mineral Deposits, 2(2): 15-24(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ198302002.htm [4] Chen, Y.C., 1994. Metallogenic Series of Ore Deposits. Earth Science Frontiers, 1(3): 90-94(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DXQY403.011&dbcode=CJFD&year=1994&dflag=pdfdown [5] Chen, Y.C., Pei, R.F., Wang, D.H., 2006. On Minerogenetic (Metallogenetic) Series: Third Discussion. Acta Geologica Sinica, 80(10): 1501-1508(in Chinese with English abstract). http://www.researchgate.net/publication/283167451_On_minerogenetic_(metallogenetic)_series_Third_discussion [6] Chen, Y.J., 2010. Indosinian Tectonic Setting, Magmatism and Metallogenesis in Qinling Orogen, Central China. Geology in China, 37(4): 854-865(in Chinese with English abstract). http://www.researchgate.net/publication/268518857_Indosinian_tectonic_setting_magmatism_and_metallogenesis_in_Qinling_Orogen_central_China [7] Chu, M.F., Chung, S.L., Song, B., et al., 2006. Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet. Geology, 34(9): 745-748. https://doi.org/10.1130/g22725.1 doi: 10.1130/G22725.1 [8] Chung, S.L., Chu, M.F., Ji, J.Q., et al., 2009. The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from PostCollisional Adakites. Tectonophysics, 477(1-2): 36-48. https://doi.org/10.1016/j.tecto.2009.08.008 [9] Chung, S.L., Liu, D.Y., Ji, J.Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31(11): 1021-1024. https://doi.org/10.1130/g19796.1 doi: 10.1130/G19796.1 [10] Deng, J., Ge, L.S., Yang, L.Q., 2013. Tectonic Dynamic System and Compound Orogeny: Additionally Discussing the Temporal-Spatial Evolution of Sanjiang Orogeny, Southwest China. Acta Petrologica Sinica, 29(4): 1099-1114(in Chinese with English abstract). http://www.oalib.com/paper/1476324 [11] Deng, J., Hou, Z.Q., Mo, X.X., et al., 2010. Superimposed Orogenesis and Metallogenesis in Sanjiang Tethys. Mineral Deposits, 29(1): 37-42(in Chinese with English abstract). http://www.researchgate.net/publication/284143802_Superimposed_orogenesis_and_metallogenesis_in_Sanjiang_Tethys [12] Deng, J., Wang, Q.F., Yang, L.Q., et al., 2010. Delineation and Explanation of Geochemical Anomalies Using Fractal Models in the Heqing Area, Yunnan Province, China. Journal of Geochemical Exploration, 105(3): 95-105. https://doi.org/10.1016/j.gexplo.2010.04.005 [13] Dewey, J.F., Shackelton, R.M., Chang, C.F., et al., 1988. The Tectonic Evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 327(1594): 379-413. https://doi.org/10.1098/rsta.1988.0135 [14] Ding, S., 2017. The Diagenesis and Metallogenesis of Sinongduo Epithermal Ag-Pb-Zn Deposit in Gangdese Belt, Tibet (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract). [15] Duan, Z.M., Li, G.M., Wang, B.D., et al., 2015. Geochronology and Its Geological Significance of the Ore-Bearing Porphyry in Chagele Lead-Zinc Deposit in Middle-Gangdese Metallogenic Belt, Tibet. Journal of Jilin University (Earth Science Edition), 45(6): 1667-1690(in Chinese with English abstract). [16] Fan, S.F., Qu, X.M., Song, Y., et al., 2015. Petrogenesis of the Ore-Forming Granodiorite in the Nixiong Iron Deposit and Its Implications for the Metallogenic Tectonic Background. Geotectonica et Metallogenia, 39(2): 286-299(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201502010.htm [17] Fei, G.C., Wen, C.Q., Wang, C.S., et al., 2010a. Zircon SHRIMP U-Pb Age of Porphyry Granite in the Dongzhongla Lead-Zinic Deposit, Maizhokunggar County, Tibet. Geology in China, 37(2): 470-476(in Chinese with English abstract). http://www.researchgate.net/publication/280022177_Zircon_SHRIMP_U-Pb_age_of_porphyry_granite_in_the_Dongzhongla_lead-zinic_deposit_Maizhokunggar_County_Tibet [18] Fei, G.C., Wen, C.Q., Zhou, X., et al., 2010b. Laser Microprobe 40Ar-39Ar Geochronology of Quartz from Dongzhongla Lead-Zinc Deposit in Tibet and Its Significance. Journal of Mineralogy and Petrology, 30(3): 38-43(in Chinese with English abstract). http://www.researchgate.net/publication/279581912_Laser_microprobe_40Ar-39Ar_geochronology_of_quartz_from_Dongzhongla_lead-zinc_deposit_in_Tibet_and_its_significance [19] Fu, Q., Yang, Z.S., Zheng, Y.C., et al., 2014. Ar-Ar Age of Phlogopite from the Longmala Copper-Iron-Lead-Zinc Deposit in Tibet and Its Geodynamic Significance. Acta Petrologica et Mineralogica, 33(2): 283-293(in Chinese with English abstract). http://www.researchgate.net/publication/312442421_Ar-Ar_age_of_phlogopite_from_Longmala_copper-iron-lead-zinc_deposit_in_Tibet_and_its_geodynamic_significance [20] Gao, S.B., Zheng, Y.Y., Jiang, X.J., et al., 2020. Discovery, Genesis and Significances of First Siver-Tin Polymetal Deposit in Western Gangdese Belt. Earth Science, 45(12): 4463-4480(in Chinese with English abstract). [21] Gao, S.B., Zheng, Y.Y., Tian, L.M., et al., 2012. Geochronology of Magmatic Intrusions and Mineralization of Chagele Copper-Lead-Zinc Deposit in Tibet and Its Implications. Earth Science, 37(3): 507-514(in Chinese with English abstract). http://www.researchgate.net/publication/287869064_Geochronology_of_magmatic_intrusions_and_mineralization_of_chagele_copper-lead-zinc_deposit_in_tibet_and_its_implications [22] Gao, Y.M., Chen, Y.C., Tang, J.X., et al., 2011. Re-Os Dating of Molybdenite from the Yaguila Porphyry Molybdenum Deposit in Gongbo'gyamda Area, Tibet, and Its Geological Significance. Geological Bulletin of China, 30(7): 1027-1036(in Chinese with English abstract). doi: 10.1007/s12182-011-0118-0 [23] Groves, D.I., Bierlein, F.P., 2007. Geodynamic Settings of Mineral Deposit Systems. Journal of the Geological Society, 164(1): 19-30. https://doi.org/10.1144/0016-76492006-065 [24] Guild, P.W., 1972. Metallogeny and the New Global Tectonics. International Geological Congress Proceedings, 4: 17-24. http://www.researchgate.net/publication/284051716_Metallogeny_and_the_new_global_tectonics [25] Hou, Z.Q., Cook, N.J., 2009. Metallogenesis of the Tibetan Collisional Orogen: A Review and Introduction to the Special Issue. Ore Geology Reviews, 36(1-3): 2-24. https://doi.org/10.1016/j.oregeorev.2009.05.001 [26] Hou, Z.Q., Gao, Y.F., Meng, X.J., et al., 2004. Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen. Acta Petrologica Sinica, 20(2): 239-248(in Chinese with English abstract). http://www.researchgate.net/publication/279572227_Genesis_of_adakitic_porphyry_and_tectonic_controls_on_the_Gangdese_Miocene_porphyry_copper_belt_in_the_Tibetan_orogen [27] Hou, Z.Q., Qu, X.M., Huang, W., et al., 2001. Gangdise Porphyry Copper Metallogenic Belt: The Possible Second "Yulong" Copper Belt. Geology in China, 28(10): 27-29, 40(in Chinese with English abstract). http://www.researchgate.net/publication/284665935_Is_Gangdese_porphyry_copper_belt_the_second_Yulong_copper_belt [28] Hou, Z.Q., Qu, X.M., Wang, S.X., et al., 2003. Re-Os Dating for Molybdenite from Gangdese Metallogenic Belt. Science in China (Series D), 33(7): 609-618(in Chinese). http://www.cqvip.com/qk/91931x/200307/8109710.html [29] Hou, Z.Q., Mo, X.X., Yang, Z.M., et al., 2006a. Metallogeneses in the Collisional Orogen of the Qinghai-Tibet Plateau: Tectonic Setting, Tempo-Spatial Distribution and Ore Deposit Types. Geology in China, 33(2): 340-351(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200602013.htm [30] Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006b. Metallogenesis in Tibetan Collisional Orogenic Belt: Ⅰ. Mineralization in Main Collisional Orogenic Setting. Mineral Deposits, 25(4): 337-358(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030175040 [31] Hou, Z.Q., Pan, X.F., Yang, Z.M., et al., 2007. Porphyry Cu-(Mo-Au) Deposits no Related to Oceanic-Slab Subduction: Examples from Chinese Porphyry Deposits in Continental Settings. Geoscience, 21(2): 332-351(in Chinese with English abstract). http://www.researchgate.net/publication/284381456_Porphyry_Cu-Mo-Au_deposits_no_related_to_oceanic-slab_subduction_Examples_from_Chinese_porphyry_deposits_in_continental_settings [32] Hou, Z.Q., Yang, Z.M., Lu, Y.J., et al., 2015. A Genetic Linkage between Subduction- and Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3): 247-250. https://doi.org/10.1130/g36362.1 doi: 10.1130/G36362.1 [33] Huang, H.X., Li, G.M., Dong, S.L., et al., 2012. 40Ar-39Ar Dating of Sericite in the Nongruri Gold Deposit of Tibet and Its Geological Significance. Geotectonica et Metallogenia, 36(4): 607-612(in Chinese with English abstract). [34] Huang, H.X., Liu, H., Li, G.M., et al., 2019. Zircon U-Pb, Molybdenite Re-Os and Quartz Vein Rb-Sr Geochronology of the Luobuzhen Au-Ag and Hongshan Cu Deposits, Tibet, China: Implications for the Oligocene-Miocene Porphyry-Epithermal Metallogenic System. Minerals, 9(8): 476. https://doi.org/10.3390/min9080476 [35] Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2009a. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262(3-4): 229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020 [36] Ji, W.Q., Wu, F.Y., Liu, C.Z., et al., 2009b. Geochronology and Petrogenesis of Granitic Rocks in Gangdese Batholith, Southern Tibet. Science in China (Series D), 52(9): 1240-1261. https://doi.org/10.1007/s11430-009-0131-y [37] Ji, X.H., Meng, X.J., Yang, Z.S., et al., 2014. The Ar-Ar Geochronology of Sericite from the Cryptoexplosive Breccia Type Pb-Zn Deposit in Narusongduo, Tibet and Its Geological Significance. Geology and Exploration, 50(2): 281-290(in Chinese with English abstract). http://www.researchgate.net/publication/289401356_The_Ar-Ar_geochronology_of_sericite_from_the_cryptoexplosive_breccia_type_Pb-Zn_deposit_in_Narusongduo_Tibet_and_its_geological_significance [38] Jiang, H.Z., Zeng, H.L., Wu, Z.S., 2011. Geological Characteristics and Prospecting Prediction in Deep Area of Layer Skarn Cu-W-Mo Deposit in Shannan Nuri Ore District, Tibet. Geology and Exploration, 47(1): 71-77(in Chinese with English abstract). http://www.researchgate.net/publication/285070674_Geological_characteristics_and_prospecting_prediction_in_deep_area_of_layered_skarn_Cu-W-Mo_deposit_in_Shannan_Nuri_Ore_District_Tibet [39] Jiang, J.S., Zheng, Y.Y., Gao, S.B., et al., 2018. The Newly-Discovered Late Cretaceous Igneous Rocks in the Nuocang District: Products of Ancient Crust Melting Trigged by Neo-Tethyan Slab Rollback in the Western Gangdese. Lithos, 308-309: 294-315. https://doi.org/10.1016/j.lithos.2018.03.009 [40] Lang, X.H., 2012. Metallogenesis and Metallogenic Prediction for Xiongcun Porphyry Copper-Gold District, Tibet (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract). [41] Lang, X.H., Deng, Y.L., Wang, X.H., et al., 2020. Reduced Fluids in Porphyry Copper-Gold Systems Reflect the Occurrence of the Wall-Rock Thermogenic Process: An Example from the No. 1 Deposit in the Xiongcun District, Tibet, China. Ore Geology Reviews, 118: 103212. https://doi.org/10.1016/j.oregeorev.2019.103212 [42] Lang, X.H., Tang, J.X., Li, Z.J., et al., 2014. U-Pb and Re-Os Geochronological Evidence for the Jurassic Porphyry Metallogenic Event of the Xiongcun District in the Gangdese Porphyry Copper Belt, Southern Tibet, PRC. Journal of Asian Earth Sciences, 79: 608-622. https://doi.org/10.1016/j.jseaes.2013.08.009 [43] Lee, C.T.A., 2013. Copper Conundrums. Nature Geoscience, 7(1): 10-11. https://doi.org/10.1038/ngeo2039 http://www.nature.com/articles/ngeo2039 [44] Lee, H.Y., Chung, S.L., Lo, C.H., et al., 2009. Eocene Neotethyan Slab Breakoff in Southern Tibet Inferred from the Linzizong Volcanic Record. Tectonophysics, 477(1-2): 20-35. https://doi.org/10.1016/j.tecto.2009.02.031 [45] Li, G.M., Liu, B., She, H.Q., et al., 2006. Early Himalayan Mineralization on the Southern Margin of the Gangdise Metallogenic Belt, Tibet, China: Evidence from Re-Os Ages of the Chongmuda Skarn-Type Cu-Au Deposit. Geological Bulletin of China, 25(12): 1481-1486(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252290550.html [46] Li, F.Q., Gao, M., Tang, W.Q., et al., 2010. U-Pb Zircon LA-ICP-MS Age of the Yaguila Molybdenum-Bearing Intrusion in Tibet and Its Geological Significance. Geology in China, 37(6): 1566-1574(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201006004.htm [47] Li, G.M., Rui, Z.Y., 2004. Diagenetic and Mineralization Ages for the Porphyry Copper Deposits in the Gangdise Metallogenic Belt, Southern Xizang. Geotectonica et Metallogenia, 28(2): 165-170(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200402007.htm [48] Li, G.M., Liu, B., Qu, W.J., et al., 2005a. The Porphyry-Skarn Ore-Forming System in Gangdese Metallogenic Belt, Southern Xizang: Evidence from Molybdenite Re-Os Age of Porohyry-Type Copper Deposits and Skarn-Type Copper Polymetallic Deposits. Geotectonica et Metallogenia, 29(4): 482-490(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DGYK200504008&dbcode=CJFD&year=2005&dflag=pdfdown [49] Li, G.M., Rui, Z.Y., Wang, G.M., et al., 2005b. Molybdenite Re-Os Dating of Jiama and Zhibula Polymetallic Copper Deposits in Gangdese Metallogenic Belt of Tibet and Its Significance. Mineral Deposits, 24(5): 481-489(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200505002.htm [50] Li, G.M., Wang, G.M., Gao, D.F., 2002. The Tectonic Framework and Metallogenic Systems in Southern Gangdise Metallogenic Belt, Xizang. Sedimentary Geology and Tethyan Geology, 22(2): 1-17(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=TTSD200202000&dbcode=CJFD&year=2002&dflag=pdfdown [51] Li, G.M., Yang, J.R., Ding, J., 2003. New Advances in Mineral Exploration in Yarlung Zangbo Metallogenic Province, Tibet. Regional Geological Bulletin of China, 22(9): 699-703(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200309012.htm [52] Li, X.F., Wang, C.Z., Mao, W., et al., 2014. The Fault-Controlled Skarn W-Mo Polymetallic Mineralization during the Main India-Eurasia Collision: Example from Hahaigang Deposit of Gangdese Metallogenic Belt of Tibet. Ore Geology Reviews, 58: 27-40. https://doi.org/10.1016/j.oregeorev.2013.10.006 [53] Li, Y., Selby, D., Condon, D., et al., 2017. Cyclic Magmatic-Hydrothermal Evolution in Porphyry Systems: High-Precision U-Pb and Re-Os Geochronology Constraints on the Tibetan Qulong Porphyry Cu-Mo Deposit. Economic Geology, 112(6): 1419-1440. https://doi.org/10.5382/econgeo.2017.4515 [54] Li, Y.X., Xie, Y.L., Chen, W., et al., 2011. U-Pb Age and Geochemical Characteristics of Zircon in Monzogranite Porphyry from Qiagong Deposit, Tibet, and Geological Implication. Acta Petrologica Sinica, 27(7): 2023-2033(in Chinese with English abstract). doi: 10.1016/j.sedgeo.2011.06.007 [55] Li, Z.Q., Hou, Z.Q., Nie, F.J., et al., 2005. Characteristic and Distribution of the Partial Melting Layers in the Upper Crust: Evidence from Active Hydrothermal Fluid in the South Tibet. Acta Geologica Sinica, 79(1): 68-77(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200501007.htm [56] Liu, B.J., Lu, Y.F., Xue, T.R., et al., 1998. Study on the Gold Metallogenetic Geochemistry in Hot Spring-Hydrothermal Systems. Acta Geoscientia Sinica, 19(3): 251-260(in Chinese with English abstract). http://www.oalib.com/paper/1559494 [57] Liu, H., Li, G.M., Huang, H.X., et al., 2019a. Sources of Ore-Forming Materials of Luerma Porphyry Copper(Gold) Deposit, Western Gangdise. Mineral Deposits, 38(3): 631-643(in Chinese with English abstract). [58] Liu, H., Li, G.M., Huang, H.X., et al., 2019b. The Discovery of the Late Triassic Porphyry Type Cu Deposit from Gangdise Metallogenic Belt, Tibet. Geology in China, 46(5): 1238-1240(in Chinese with English abstract). [59] Liu, H., Zhang, L.K., Huang, H.X., et al., 2019c. Origin and Evolution of Ore-Forming Fluids in Luerma Porphyry Copper (Gold) Deposit from Western Gangdise. Earth Science, 44(6): 1935-1956(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201906014.htm [60] Liu, J., Zheng, Y.Y., Gao, S.B., et al., 2019. Zircon U-Pb Dating, Geochemistry, and Sr-Nd-Pb-Hf Isotopes of the Subvolcanic Intrusion from Beina Pb-Zn-(Ag) Deposit in the Southern Lhasa Terrane, Tibet: Implications for Petrogenesis and Mineralization. Geological Journal, 54(4): 2064-2083. https://doi.org/10.1002/gj.3284 [61] Liu, Y.F., Hou, Z.Q., Yang, Z.M., et al., 2011. Study on Fluid Inclusion of Nongruri Gold Deposit, Tibet, China. Acta Petrologica Sinica, 27(7): 2150-2158(in Chinese with English abstract). http://www.researchgate.net/publication/282723971_Study_on_fluid_inclusion_of_Nongruri_gold_deposit_Tibet_China [62] Lu, Y.J., Loucks, R.R., Fiorentini, M.L., et al., 2015. Fluid Flux Melting Generated Postcollisional High Sr/Y Copper Ore-Forming Water-Rich Magmas in Tibet. Geology, 43(7): 583-586. https://doi.org/10.1130/g36734.1 doi: 10.1130/G36734.1 [63] Liu, Z.Q., Xu, X., Pan, G.T., et al., 1990. Tectonics, Geological Evolution and Genetic Mechanism of Qinghai-Xizang (Tibet) Plateau. Geological Publishing House, Beijing(in Chinese). [64] Mao, J.W., Pirajno, F., Lehmann, B., et al., 2014. Distribution of Porphyry Deposits in the Eurasian Continent and Their Corresponding Tectonic Settings. Journal of Asian Earth Sciences, 79: 576-584. https://doi.org/10.1016/j.jseaes.2013.09.002 [65] Mao, J.W., Pirajno, F., Xiang, J.F., et al., 2011. Mesozoic Molybdenum Deposits in the East Qinling-Dabie Orogenic Belt: Characteristics and Tectonic Settings. Ore Geology Reviews, 43(1): 264-293. https://doi.org/10.1016/j.oregeorev.2011.07.009 [66] Mao, J.W., Ye, H.S., Wang, R.T., et al., 2009. Mineral Deposit Model of Mesozoic Porphyry Mo and Vein-Type Pb-Zn-Ag Ore Deposits in the Eastern Qinling, Central China and Its Implication for Prospecting. Geological Bulletin of China, 28(1): 72-79(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200901010.htm [67] Mao, J.W., Zhang, Z.C., Zhang, Z.H., et al., 1999. Re-Os Isotopic Dating of Molybdenites in the Xiaoliugou W (Mo) Deposit in the Northern Qilian Mountains and Its Geological Significance. Geochimica et Cosmochimica Acta, 63(11-12): 1815-1818. https://doi.org/10.1016/s0016-7037(99)00165-9 doi: 10.1016/S0016-7037(99)00165-9 [68] Mao, J.W., Zhou, Z.H., Wu, G., et al., 2013. Metallogenic Regularity and Minerogenetic Series of Ore Deposits in Inner Mongolia and Adjacent Areas. Mineral Deposits, 32(4): 716-730(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-KCDZ201304008.htm [69] Meng, F.Y., Zhao, Z.D., Zhu, D.C., et al., 2014. Late Cretaceous Magmatism in Mamba Area, Central Lhasa Subterrane: Products of Back-Arc Extension of Neo-Tethyan Ocean? Gondwana Research, 26(2): 505-520. https://doi.org/10.1016/j.gr.2013.07.017 [70] Meng, X.J., Hou, Z.Q., Gao, Y.F., et al., 2003a. Re-Os Dating for Molybdenite from Qulong Porphyry Copper Deposit in Gangdese Metallogenic Belt, Xizang and Its Metallogenic Significance. Geological Review, 49(6): 660-666(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200306016.htm [71] Meng, X.J., Hou, Z.Q., Gao, Y.F., et al., 2003b. Development of Porphyry Copper-Molybdenum-Lead-Zinc Ore-Forming System in East Gangdese Belt, Tibet: Evidence from Re-Os Age of Molybdenite in Bangpu Copper Polymetallic Deposit. Mineral Deposits, 22(3): 246-252(in Chinese with English abstract). http://www.researchgate.net/publication/312919476_Development_of_porphyry_copper-molybdenum-lead-zinc_ore-forming_system_in_east_Gangdese_belt_Tibet_evidence_from_Re-Os_age_of_molybdenite_in_Bangpu_copper_polymetallic_deposit [72] Mitchell, A.H.G., Garson, M.S., 1981. Mineral Deposits and Global Tectonic Settings. Academic Publishing House, London. [73] Mo, X.X., Niu, Y.L., Dong, G.C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1-4): 49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003 [74] Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10(3): 135-148(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026542218 [75] Pan, G.T., Ding, J., Yao, D.S., et al., 2004. Guidebook of 1: 1 500 000 Geologic Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Areas. Chengdu Cartographic Publishing House, Chengdu(in Chinese). [76] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533(in Chinese with English abstract). http://www.researchgate.net/publication/279572099_Spatial-temporal_framework_of_the_Gangdese_Orogenic_Belt_and_its_evolution [77] Qian, J.P., Huang, D.Y., Xie, B.W., et al., 2013. Study on Geology and Tectono-Geochemistry of the Silongduo Lead-Zinc Deposit in Xietongmen County, Tibet. Geotectonica et Metallogenia, 37(1): 29-41(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201301007.htm [78] Qin, K.Z., Li, G.M., Zhao, J.X., et al., 2008. Discovery of Sharang Large-Scale Porphyry Molybdenum Deposit, the First Single Mo Deposit in Tibet and Its Significance. Geology in China, 35(6): 1101-1112(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030175334 [79] Qin, K, Z, Xia, D.X., Li, G.M., et al., 2014. Qulong Porphyry-Skarn Type Cu-Mo Deposit. Science Press, Beijing(in Chinese). [80] Qin, Z.P., Wang, X.W., Duo, J., et al., 2011. LA-ICP-MS U-Pb Zircon Age of Intermediate-Acidic Intrusive Rocks in Jiama of Tibet and Its Metallogenic Significance. Mineral Deposits, 30(2): 339-348(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201102015.htm [81] Qu, X.M., Hou, Z.Q., Guo, L.J., et al., 2004. Source Compositions and Crustal Contaminations of Adakitic Ore-Bearing Porphyries in the Gangdise Copper Belt: Nd, Sr, Pb and O Isotope Constraints. Acta Geologica Sinica, 78(6): 813-821(in Chinese with English abstract) http://www.researchgate.net/publication/282383286_Source_compositions_and_crustal_contaminations_of_adakiticOre-bearing_porphyries_in_the_Gangdise_Copper_Belt_Nd_Sr_Pb_and_O_isotope_constraints [82] Qu, X.M., Hou, Z.Q., Li, Y.G., 2002. Ore-Bearing Adakites Found in the Gangdese Collision-Orogenic Belt. Mineral Deposits, 21(Suppl. 1): 215-218(in Chinese with English abstract). [83] Qu, X.M., Hou, Z.Q., Li, Z.Q., 2003. 40Ar/39Ar Ages of the Ore-Bearing Porphyries of the Gangdese Porphyry Copper Belt and Their Geological Significances. Acta Geologica Sinica, 77(2): 245-252(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geologica-sinica_thesis/0201252712165.html [84] Qu, X.M., Hou, Z.Q., Mo, X.X., et al., 2006. Relationship between Gangdese Porphyry Copper Deposits and Uplifting of Southern Tibet Plateau: Evidence from Multistage Zircon of Ore-Bearing Porphyries. Mineral Deposits, 25(4): 388-400(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200604003.htm [85] Richards, J.P., 2009. Postsubduction Porphyry Cu-Au and Epithermal Au Deposits: Products of Remelting of Subduction-Modified Lithosphere. Geology, 37(3): 247-250. https://doi.org/10.1130/g25451a.1 doi: 10.1130/G25451A.1 [86] Richards, J.P., 2011. Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins. Ore Geology Reviews, 40(1): 1-26. https://doi.org/10.1016/j.oregeorev.2011.05.006 [87] Rui, Z.Y., Hou, Z.Q., Li, G.M., et al., 2006. A Genetic Model for the Gandisê Porphyry Copper Deposits. Geological Review, 52(4): 459-466(in Chinese with English abstract). http://www.researchgate.net/publication/285862512_A_genetic_model_for_the_Gandise_porphyry_copper_deposits [88] Rui, Z.Y., Hou, Z.Q., Qu, X.M., et al., 2003. Metallogenetic Epoch of Gangdese Porphyry Copper Belt and Uplift of Qinghai-Tibet Plateau. Mineral Deposits, 22(3): 217-225(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030175067 [89] Rui, Z.Y., Li, G.M., Zhang, L.S., et al., 2004. The Response of Porphyry Copper Deposits to Important Geological Events in Xizang. Earth Science Frontiers, 11(1): 145-152(in Chinese with English abstract). http://www.cqvip.com/qk/98600X/200401/9484861.html [90] Stein, H.J., Markey, R.J., Morgan, J.W., et al., 2001. The Remarkable Re-Os Chronometer in Molybdenite: How and Why It Works. Terra Nova, 13(6): 479-486. https://doi.org/10.1046/j.1365-3121.2001.00395.x [91] Sun, W.D., Liang, H.Y., Ling, M.X., et al., 2013. The Link between Reduced Porphyry Copper Deposits and Oxidized Magmas. Geochimica et Cosmochimica Acta, 103: 263-275. https://doi.org/10.1016/j.gca.2012.10.054 [92] Sun, X., Lu, Y.J., McCuaig, T.C., et al., 2018. Miocene Ultrapotassic, High-Mg Dioritic, and Adakite-Like Rocks from Zhunuo in Southern Tibet: Implications for Mantle Metasomatism and Porphyry Copper Mineralization in Collisional Orogens. Journal of Petrology, 59(3): 341-386. doi: 10.1093/petrology/egy028 [93] Sun, X., Zheng, Y.Y., Li, M., et al., 2017. Genesis of Luobuzhen Pb-Zn Veins: Implications for Porphyry Cu Systems and Exploration Targeting at Luobuzhen-Dongshibu in Western Gangdese Belt, Southern Tibet. Ore Geology Reviews, 82: 252-267. https://doi.org/10.1016/j.oregeorev.2016.11.016 [94] Sun, X., Zheng, Y.Y., Wu, S., et al., 2013. Mineralization Age and Petrogenesis of Associated Intrusions in the Mingze-Chengba Porphyry-Skarn Mo-Cu Deposit, Gangdese. Acta Petrologica Sinica, 29(4): 1392-1406(in Chinese with English abstract). [95] Tafti, R., Mortensen, J.K., Lang, J.R., et al., 2009. Jurassic U-Pb and Re-Os Ages for the Newly Discovered Xietongmen Cu-Au Porphyry District, Tibet, PRC: Implications for Metallogeic Epoches in the Southern Gangdese Belt. Economic Geology, 104(1): 127-136. https://doi.org/10.2113/gsecongeo.104.1.127 [96] Tang, J.X., Chen, Y.C., Wang, D.H., et al., 2009. Re-Os Dating of Molybdenite from the Sharang Porphyry Molybdenum Deposit in Gongbo'gyamda County, Tibet and Its Geological Significance. Acta Geologica Sinica, 83(5): 698-704(in Chinese with English abstract). http://www.researchgate.net/publication/285347553_Re-Os_dating_of_molybdenite_from_the_Sharang_Porphyry_Molybdenum_deposit_in_Gongbo'gyamda_county_Tibet_and_its_geological_significance [97] Tang, J.X., Deng, S.L., Zheng, W.B., et al., 2011. An Exploration Model for Jiama Copper Polymetallic Deposit in Maizhokunggar County, Tibet. Mineral Deposits, 30(2): 179-196(in Chinese with English abstract). http://www.cqvip.com/QK/93610X/201102/37482866.html [98] Tang, J.X., Li, F.J., Li, Z.J., et al., 2010a. Time Limit for Formation of Main Geological Bodies in Xiongcun Copper-Gold Deposit, Xietongmen County, Tibet: Evidence from Zircon U-Pb Ages and Re-Os Age of Molybdenite. Mineral Deposits, 29(3): 461-475(in Chinese with English abstract). http://www.researchgate.net/publication/285347410_Time_limit_for_formation_of_main_geological_bodies_in_Xiongcun_copper-gold_deposit_Xietongmen_County_Tibet_Evidence_from_zircon_U-Pb_ages_and_Re-Os_age_of_molybdenite [99] Tang, J.X., Wang, D.H., Wang, X.W., et al., 2010b. Geological Features and Metallogenic Model of the Jiama Copper-Polymetallic Deposit in Tibet. Acta Geoscientica Sinica, 31(4): 495-506(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201004002.htm [100] Tian, K., Zheng, Y.Y., Gao, S.B., et al., 2019. Petrogenesis and Geological Implications of Late Cretaceous Intrusion from Bangbule Pb-Zn-Cu Deposit, Western Gangdese, Tibet. Earth Science, 44(6): 1905-1922(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201906012.htm [101] Wang, B.D., Xu, J.F., Chen, J.L., et al., 2010. Petrogenesis and Geochronology of the Ore-Bearing Porphyritic Rocks in Tangbula Porphyry Molybdenum-Copper Deposit in the Eastern Segment of the Gangdese Metallogenic Belt. Acta Petrologica Sinica, 26(6): 1820-1832(in Chinese with English abstract). http://www.researchgate.net/publication/309456986_Petrogenesis_and_geochronology_of_the_ore-bearing_porphyritic_rocks_in_Tangbula_porphyry_molybdenum-copper_deposit_in_the_eastern_segment_of_the_Gangdese_metallogenic_belt [102] Wang, L.L., Mo, X.X., Li, B., et al., 2006. Geochronology and Geochemistry of the Ore-Bearing Porphyry in Qulong Cu(Mo) Ore Deposit, Tibet. Acta Petrologica Sinica, 22(4): 1001-1008(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200604023.htm [103] Wang, L.Q., Tang, J.X., Chen, Y.C., et al., 2011. LA-ICP-MS Zircon U-Pb Dating of Ore-Bearing Monzogranite Porphyry in Bangpu Molybdenum (Copper) Deposit, Tibet and Its Significance. Mineral Deposits, 30(2): 349-360(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201102016.htm [104] Wang, R., Richards, J.P., Zhou, L.M., et al., 2015. The Role of Indian and Tibetan Lithosphere in Spatial Distribution of Cenozoic Magmatism and Porphyry Cu-Mo Deposits in the Gangdese Belt, Southern Tibet. Earth-Science Reviews, 150: 68-94. https://doi.org/10.1016/j.earscirev.2015.07.003 [105] Wei, B., Cheng, S.B., Pang, Y.C., 2010. The Mineralization Age of Mengyaa Lead-Zinc Deposit in Tibet and Its Geological Significance. Geology and Mineral Resources of South China, 26(1): 14-19(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC201001003.htm [106] Wen, D.R., Liu, D.Y., Chung, S.L., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chemical Geology, 252(3-4): 191-201. https://doi.org/10.1016/j.chemgeo.2008.03.003 [107] Wu, F.Y., Ji, W.Q., Liu, C.Z., et al., 2010. Detrital Zircon U-Pb and Hf Isotopic Data from the Xigaze Fore-Arc Basin: Constraints on Transhimalayan Magmatic Evolution in Southern Tibet. Chemical Geology, 271(1-2): 13-25. https://doi.org/10.1016/j.chemgeo.2009.12.007 [108] Wu, F.Y., Ji, W.Q., Wang, J.G., et al., 2014a. Zircon U-Pb and Hf Isotopic Constraints on the Onset Time of India-Asia Collision. American Journal of Science, 314(2): 548-579. https://doi.org/10.2475/02.2014.04 [109] Wu, S., 2016. The Super-Large Zhunuo Porphyry Cu Deposit in the Gangdese Belt, Southern Tibet: Magmatism and Mineralization (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). [110] Wu, S., Zheng, Y.Y., Geng, R.R., et al., 2017. Geology, Fluid Inclusion and Isotope Constraints on Ore Genesis of the Post-Collisional Dabu Porphyry Cu-Mo Deposit, Southern Tibet. Ore Geology Reviews, 89: 421-440. https://doi.org/10.1016/j.oregeorev.2017.06.030 [111] Wu, S., Zheng, Y.Y., Sun, X., et al., 2014b. Origin of the Miocene Porphyries and Their Mafic Microgranular Enclaves from Dabu Porphyry Cu-Mo Deposit, Southern Tibet: Implications for Magma Mixing/Mingling and Mineralization. International Geology Review, 56(5): 571-595. https://doi.org/10.1080/00206814.2014.880074 [112] Wu, S., Zheng, Y.Y., Sun, X., 2016. Subduction Metasomatism and Collision-Related Metamorphic Dehydration Controls on the Fertility of Porphyry Copper Ore-Forming High Sr/Y Magma in Tibet. Ore Geology Reviews, 73: 83-103. https://doi.org/10.1016/j.oregeorev.2015.10.023 [113] Xiao, B., Qin, K.Z. Li, G.M., et al., 2009. S-Rich, Highly-Oxidized Ore-Bearing Magma in the Qulong Giant Porphyry-Type Cu-Mo Deposit in Southern Tibet: Evidence from Magmatogenic Anhydrite. Acta Geologica Sinica, 83(12): 1860-1868(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030175077 [114] Xiao, X.C., Li, T.D., Li, G.C., et al., 1988. Tectonic Evolution of the Lithosphere of the Himalayas (General Review). Geological Publishing House, Beijing(in Chinese). [115] Xin, C.L., Du, W.D., Zhang, Y.P., et al., 2013. A Preliminary Study of the Geologic Characteristics and Genesis of the Dongzhongsongduo Lead-Zinc Polymetallic Deposit, Tibet. Journal of Lanzhou University (Natural Sciences), 49(1): 24-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LDZK201301006.htm [116] Xu, J., Zheng, Y.Y., Sun, X., et al., 2014. Mineralogical Characteristics of Zhibula Skarn-Type Cu Deposit in Tibet and Their Geological Significance. Earth Science, 39(6): 654-670, 768(in Chinese with English abstract). [117] Xu, Z.Q., 2006. Continental Dynamics in the Qinghai-Tibet Plateau (1984-2006). Geological Publishing House, Beijing(in Chinese). [118] Xu, Z.Q., Li, H.B., Yang, J.S., 2006. An Orogenic Plateau: The Orogenic Collage and Orogenic Types of the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4): 1-17(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200604001.htm [119] Yan, X.Y., Huang, S.F., Du, A.D., 2010. Re-Os Ages of Large Tungsten, Copper and Molybdenum Deposit in the Zetang Orefield, Gangdisê and Marginal Strike-Slip Transforming Metallogenesis. Acta Geologica Sinica, 84(3): 398-406(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geologica-sinica_thesis/0201252706801.html [120] Yang, Z.M., 2008. The Qulong Giant Porphyry Copper Deposit in Tibet: Magmatism and Mineraliztion (Dissertation). Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract). [121] Yang, Z.M., Goldfarb, R., Chang, Z.S., 2016. Generation of Postcollisional Porphyry Copper Deposits in Southern Tibet Triggered by Subduction of the Indian Continental Plate. Society of Economic Geologists Special Publication, 19: 279-230. http://www.researchgate.net/publication/304778002_Generation_of_postcollisional_porphyry_copper_deposits_in_southern_Tibet_triggered_by_subduction_of_the_Indian_continental_plate [122] Yang, Z.M., Hou, Z.Q., White, N.C., et al., 2009. Geology of the Post-Collisional Porphyry Copper-Molybdenum Deposit at Qulong, Tibet. Ore Geology Reviews, 36(1-3): 133-159. https://doi.org/10.1016/j.oregeorev.2009.03.003 [123] Yang, Z.M., Hou, Z.Q., Song, Y.C., et al., 2008. Qulong Superlarge Porphyry Cu Deposit in Tibet: Geology, Alteration and Mineralization. Mineral Deposits, 27(3): 279-318(in Chinese with English abstract). http://www.cqvip.com/qk/93610x/2008003/27727823.html [124] Yang, Z.M., Lu, Y.J., Hou, Z.Q., et al., 2015. High-Mg Diorite from Qulong in Southern Tibet: Implications for the Genesis of Adakite-Like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens. Journal of Petrology, 56(2): 227-254. https://doi.org/10.1093/petrology/egu076 [125] Yin, A., Harrison, T.M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [126] Ying, L.J., Tang, J.X., Wang, D.H., et al., 2011. Zircon SHRIMP U-Pb Dating of Porphyry Vein from the Jiama Copper Polymetallic Deposit in Tibet and Its Significance. Acta Petrologica Sinica, 27(7): 2095-2102(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201107018.htm [127] Yu, Y.S., Gao, Y., Yang, Z.S., et al., 2011a. Zircon LA-ICP-MS U-Pb Dating and Geochemistry of Intrusive Rocks from Gunjiu Iron Deposit in the Nixiong Ore Field, Coqen, Tibet. Acta Petrologica Sinica, 27(7): 1949-1960(in Chinese with English abstract). doi: 10.1016/j.sedgeo.2011.06.007 [128] Yu, Y.S., Yang, Z.S., Duo, J., et al., 2011b. Age and Petrogenesis of Magmatic Rocks from Jiaduobule Skarn Fe-Cu Deposit in Tibet: Evidence from Zircon SHRIMP U-Pb Dating, Hf Isotope and REE. Mineral Deposits, 30(3): 420-434(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201103005.htm [129] Yu, Y.S., Yang, Z.S., Liu, Y.C., et al., 2012a. Mineralogical Characteristics and 40Ar-39Ar Dating of Phlogopite from the Gunjiu Iron Deposit in the Nixiong Ore Field, Coqen, Tibet. Acta Petrologica et Mineralogica, 31(5): 681-690(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-mineralogica_thesis/0201254450017.html [130] Yu, Y.S., Yang, Z.S., Liu, Y.C., et al., 2012b. Mineralogical Characteristics of Skarn in Ri'a Copper Deposit of Nixiong Orefield, Tibet, and Their Geological Significance. Mineral Deposits, 31(4): 775-790(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201204010.htm [131] Zhang, H.F., Xu, W.C., Guo, J.Q., et al., 2007. Zircon U-Pb and Hf Isotopic Composition of Deformed Granite in the Southern Margin of the Gangdise Belt, Tibet: Evidence for Early Jurassic Subduction of Neo-Tethyan Oceanic Slab. Acta Petrologica Sinica, 23(6): 1347-1353(in Chinese with English abstract). http://www.researchgate.net/publication/279625792_Zircon_U-Pb_and_Hf_isotopic_composition_of_deformed_granite_in_the_southern_margin_of_the_Gangdese_belt_Tibet_Evidence_for_early_Jurassic_subduction_of_Neo-Tethyan_oceanic_slab [132] Zhang, K.J., Xia, B.D., Wang, G.M., et al., 2004. Early Cretaceous Stratigraphy, Depositional Environments, Sandstone Provenance, and Tectonic Setting of Central Tibet, Western China. Geological Society of America Bulletin, 116(9-10): 1202-1222. https://doi.org/10.1130/b25388.1 http://adsabs.harvard.edu/abs/2004gsab..116.1202z [133] Zhang, L.K., Fan, W.Y., Gao, D.F., 2008. Geology and Genesis of Leqingla Pb-Zn Polymetallic Deposit in the Linzhou County, Tibet. Geology and Prospecting, 44(5): 10-16. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200805004.htm [134] Zhang, S.K., Zheng, Y.Y., Zhang, G.Y., et al., 2013. Geochronological Constraints on Jigongcun Quartz-Vein Type Molybdenum Deposit in Quxu County, Tibet. Mineral Deposits, 32(3): 641-648(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201303014.htm [135] Zhang, X.G., 1998. Sulfur Mineralization of Modern Geotheramal System in Yangbajing Basin of Xizang. Geology of Chemical Minerals, 20(1): 1-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HGKC199801000.htm [136] Zhao, J.X., Qin, K.Z., Li, G.M., et al., 2012. Geochemistry and Petrogenesis of Granitoids at Sharang Eocene Porphyry Mo Deposit in the Main-Stage of India-Asia Continental Collision, Northern Gangdese, Tibet. Resource Geology, 62(1): 84-98. https://doi.org/10.1111/j.1751-3928.2011.00181.x [137] Zhao, J.X., Qin, K.Z., Li, G.M., et al., 2014. Collision-Related Genesis of the Sharang Porphyry Molybdenum Deposit, Tibet: Evidence from Zircon U-Pb Ages, Re-Os Ages and Lu-Hf Isotopes. Ore Geology Reviews, 56: 312-326. https://doi.org/10.1016/j.oregeorev.2013.06.005 [138] Zhao, X.Y., Yang, Z.S., Zheng, Y.C., et al., 2015. Geology and Genesis of the Post-Collisional Porphyry-Skarn Deposit at Bangpu, Tibet. Ore Geology Reviews, 70: 486-509. https://doi.org/10.1016/j.oregeorev.2014.09.014 [139] Zhao, Y.Y., Nie, F.J., Hou, Z.Q., et al., 2006. Isotope Characteristics and Formation Process of Hot Spring Type Cesium Deposit in Targejia, Tibet. Mineral Deposits, 25(5): 613-619(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200605007.htm [140] Zheng, M.P., Liu, W.G., Xiang, J., et al., 1983. On Saline Lakes in Tibet, China. Acta Geological Sinica, 57(2): 184-194(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE198302007.htm [141] Zheng, M, P., Xiang, J., Wei, X, J., et al., 1989. Saline Lakes of Tibetan Plateau. Beijing Science and Technology Publishing House, Beijing(in Chinese) [142] Zheng, Y.C., Hou, Z.Q., Li, W., et al., 2012. Petrogenesis and Geological Implications of the Oligocene Chongmuda-Mingze Adakite-Like Intrusions and Their Mafic Enclaves, Southern Tibet. The Journal of Geology, 120(6): 647-669. https://doi.org/10.1086/667812 [143] Zheng, Y.Y., Ci, Q., Wu, S., et al., 2017. The Discovery and Significance of Rongga Porphyry Mo Deposit in the Bangong-Nujiang Metallogenic Belt, Tibet. Earth Science, 42(9): 1441-1453(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201709001.htm [144] Zheng, Y.Y., Duo, J., Wang, R.J., et al., 2007a. New Advances in the Study of the Gigantic Gangdise Porphyry Copper Metallogenic Zone, Tibet. Geology in China, 34(2): 324-334(in Chinese with English abstract). http://www.researchgate.net/publication/283475074_New_advances_in_the_study_of_the_gigantic_Gangdise_porphyry_copper_metallogenic_zone_Tibet [145] Zheng, Y.Y., Gao, S.B., Sun, X., et al., 2013. Qulong Super Large Porphyry Cu Mo Deposit in Tibet. Geological Publishing House, Beijing(in Chinese) [146] Zheng, Y.Y., Gao, S.B., Zhang, D.Q., et al., 2006. The Discovery of the Zhunuo Porphyry Copper Deposit in Tibet and Its Significance. Earth Science Frontiers, 13(4): 233-239(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200604023.htm [147] Zheng, Y.Y., Sun, X., Gao, S.B., et al., 2015. Metallogenesis and the Minerogenetic Series in the Gangdese Polymetallic Copper Belt. Journal of Asian Earth Sciences, 103: 23-39. https://doi.org/10.1016/j.jseaes.2014.11.036 [148] Zheng, Y.Y., Sun, X., Gao, S.B., et al., 2014a. Analysis of Stream Sediment Data for Exploring the Zhunuo Porphyry Cu Deposit, Southern Tibet. Journal of Geochemical Exploration, 143: 19-30. https://doi.org/10.1016/j.gexplo.2014.02.012 [149] Zheng, Y.Y., Sun, X., Gao, S.B., et al., 2014b. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. https://doi.org/10.1016/j.jseaes.2013.03.029 [150] Zheng, Y.Y., Wang, B.S., Fan, Z.H., et al., 2002. Analysis of Tectonic Evolution in the Eastern Section of the Gangdise Mountains, Tibet and the Metallogenic Potentialities of Copper Gold Poly Metal. Geological Science and Technology Information, 21(2): 55-60(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzkq200202013.htm [151] Zheng, Y.Y., Xue, Y.X., Cheng, L.J., et al., 2004. Finding, Characteristics and Significances of Qulong Superlarge Porphyry Copper (Molybdenum) Deposit, Tibet. Earth Science, 29(1): 103-108(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200401018.htm [152] Zheng, Y.Y., Zhang, G.Y., Gao, S.B., et al., 2008. The Discovery and Significance of the Sharang Porphyry Molybdenum Deposit and its Rock-Forming and Ore-Forming Age Restriction. In: Chen, Y.C., ed., The Proceeding of the 9th National Conference of Mineral Deposits, China, Beijing, 674-676(in Chinese). [153] Zheng, Y.Y., Zhang, G.Y., Xu, R.K., et al., 2007b. Geochronologic Constraints on Magmatic Intrusions and Mineralization of the Zhunuo Porphyry Copper Deposit in Gangdese, Tibet. Chinese Science Bulletin, 52(21): 2542-2548(in Chinese). doi: 10.1360/csb2007-52-21-2542 [154] Zheng, Y.Y., Zhao, Y.X., Wang, P., et al., 2004. The Research of Metallogenic Regularity and the Great Progress of Ore Finding in Metallogenic Belt in Southern Tibet, China. Earth Science, 29(1): 44-45(in Chinese with English abstract). [155] Zhu, D.C., Pan, G.T., Chung, S.L., et al., 2008. SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50(5): 442-471. https://doi.org/10.2747/0020-6814.50.5.442 [156] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005 [157] Zhu, D.C., Zhao, Z.D., Pan, G.T., et al., 2009. Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet: Products of Slab Melting and Subsequent Melt-Peridotite Interaction?Journal of Asian Earth Sciences, 34(3): 298-309. https://doi.org/10.1016/j.jseaes.2008.05.003 [158] Zhou, X., Cao, Y.G., Zhu, M.Y., et al., 1984. Plate Tectonics of Tibet 1: 1 500 000. Geological Press, Beijing(in Chinese). [159] 陈毓川, 1984. 华南与燕山期花岗岩有关的稀土、稀有、有色金属矿床成矿系列. 矿床地质, 2(2): 15-24. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198302002.htm [160] 陈毓川, 1983. 华南与燕山期花岗岩有关的稀土、稀有、有色金属矿床成矿系列. 矿床地质, 2(2): 15-24. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198302002.htm [161] 陈毓川, 1994. 矿床的成矿系列. 地学前缘, 1(3): 90-94. doi: 10.3321/j.issn:1005-2321.1994.03.008 [162] 陈毓川, 裴荣富, 王登红, 2006. 三论矿床的成矿系列问题. 地质学报, 80(10): 1501-1508. doi: 10.3321/j.issn:0001-5717.2006.10.003 [163] 陈衍景, 2010. 秦岭印支期构造背景、岩浆活动及成矿作用. 中国地质, 37(4): 854-865. doi: 10.3969/j.issn.1000-3657.2010.04.003 [164] 邓军, 葛良胜, 杨立强, 2013. 构造动力体制与复合造山作用——兼论三江复合造山带时空演化. 岩石学报, 29(4): 1099-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201304001.htm [165] 邓军, 侯增谦, 莫宣学, 等, 2010. 三江特提斯复合造山与成矿作用. 矿床地质, 29(1): 37-42. doi: 10.3969/j.issn.0258-7106.2010.01.005 [166] 丁帅, 2017. 西藏冈底斯成矿带斯弄多浅成低温热液型银铅锌矿床成岩与成矿作用研究(博士学位论文). 成都: 成都理工大学. [167] 段志明, 李光明, 王保弟, 等, 2015. 西藏中冈底斯成矿带查个勒铅锌矿床含矿斑岩年代学及其地质意义. 吉林大学学报(地球科学版), 45(6): 1667-1690. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201506010.htm [168] 范淑芳, 曲晓明, 宋扬, 等, 2015. 西藏尼雄铁矿成矿花岗岩成因及其对成矿构造背景的启示. 大地构造与成矿学, 39(2): 286-299. doi: 10.3969/j.issn.1001-1552.2015.02.009 [169] 费光春, 温春齐, 王成松, 等, 2010a. 西藏墨竹工卡县洞中拉铅锌矿床花岗斑岩锆石SHRIMP U-Pb定年. 中国地质, 37(2): 470-476. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201002022.htm [170] 费光春, 温春齐, 周雄, 等, 2010b. 西藏洞中拉铅锌矿床石英激光探针40Ar-39Ar定年及地质意义. 矿物岩石, 30(3): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201003005.htm [171] 付强, 杨竹森, 郑远川, 等, 2014. 西藏龙马拉Cu-Fe-Pb-Zn多金属矿床金云母Ar-Ar定年及其地球动力学意义. 岩石矿物学杂志, 33(2): 283-293. doi: 10.3969/j.issn.1000-6524.2014.02.007 [172] 高顺宝, 郑有业, 姜晓佳, 等, 2020. 冈底斯西段首例银锡多金属矿床的发现、成因及意义. 地球科学, 45(12): 4463-4480. doi: 10.3799/dqkx.2020.262 [173] 高顺宝, 郑有业, 田立明, 等, 2012. 西藏查个勒铜铅锌矿成岩成矿时代及意义. 地球科学, 37(3): 507-514. http://www.earth-science.net/article/id/2254 [174] 高一鸣, 陈毓川, 唐菊兴, 等, 2011. 西藏工布江达地区亚贵拉铅锌钼矿床辉钼矿Re-Os测年及其地质意义. 地质通报, 30(7): 1027-1036. doi: 10.3969/j.issn.1671-2552.2011.07.004 [175] 侯增谦, 高永丰, 孟祥金, 等, 2004. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制. 岩石学报, 20(2): 239-248. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402005.htm [176] 侯增谦, 莫宣学, 杨志明, 等, 2006a. 青藏高原碰撞造山带成矿作用: 构造背景、时空分布和主要类型. 中国地质, 33(2): 340-351. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200602013.htm [177] 侯增谦, 潘小菲, 杨志明, 等, 2007. 初论大陆环境斑岩铜矿. 现代地质, 21(2): 332-351. doi: 10.3969/j.issn.1000-8527.2007.02.019 [178] 侯增谦, 曲晓明, 黄卫, 等, 2001. 冈底斯斑岩铜矿成矿带有望成为西藏第二条"玉龙"铜矿带. 中国地质, 28(10): 27-29, 40. doi: 10.3969/j.issn.1000-3657.2001.10.005 [179] 侯增谦, 曲晓明, 王淑贤, 等, 2003. 西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄: 成矿作用时限与动力学背景应用. 中国科学(D辑), 33(7): 609-618. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200307000.htm [180] 侯增谦, 杨竹森, 徐文艺, 等, 2006b. 青藏高原碰撞造山带: I. 主碰撞造山成矿作用. 矿床地质, 25(4): 337-358. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604000.htm [181] 黄瀚霄, 李光明, 董随亮, 等, 2012. 西藏弄如日金矿床蚀变绢云母40Ar-39Ar年龄及其地质意义. 大地构造与成矿学, 36(4): 607-612. doi: 10.3969/j.issn.1001-1552.2012.04.014 [182] 纪现华, 孟祥金, 杨竹森, 等, 2014. 西藏纳如松多隐爆角砾岩型铅锌矿床绢云母Ar-Ar定年及其地质意义. 地质与勘探, 50(2): 281-290. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201402008.htm [183] 江化寨, 曾海良, 吴志山, 2011. 西藏山南努日矿区层矽卡岩型铜钨钼矿床地质特征及深部找矿预测. 地质与勘探, 47(1): 71-77. doi: 10.3969/j.issn.1001-1986.2011.01.017 [184] 郎兴海, 2012. 西藏雄村斑岩型铜金矿集区成矿作用与成矿预测(博士学位论文). 成都: 成都理工大学. [185] 李奋其, 高明, 唐文清, 等, 2010. 西藏亚贵拉含钼岩体锆石LA-ICP-MS年龄和地质意义. 中国地质, 37(6): 1566-1574. doi: 10.3969/j.issn.1000-3657.2010.06.003 [186] 李光明, 刘波, 屈文俊, 等, 2005a. 西藏冈底斯成矿带的斑岩-矽卡岩成矿系统——来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据. 大地构造与成矿学, 29(4): 482-490. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200504008.htm [187] 李光明, 芮宗瑶, 王高明, 等, 2005b. 西藏冈底斯成矿带甲马和知不拉铜多金属矿床的Re-Os同位素年龄及其意义. 矿床地质, 24(5): 481-489. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200505002.htm [188] 李光明, 刘波, 佘宏全, 等, 2006. 西藏冈底斯成矿带南缘喜马拉雅早期成矿作用——来自冲木达铜金矿床的Re-Os同位素年龄证据. 地质通报, 25(12): 1481-1486. doi: 10.3969/j.issn.1671-2552.2006.12.018 [189] 李光明, 芮宗瑶, 2004. 西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄. 大地构造与成矿学, 28(2): 165-170. doi: 10.3969/j.issn.1001-1552.2004.02.008 [190] 李光明, 王高明, 高大发, 等, 2002. 西藏冈底斯南缘构造格架与成矿系统. 沉积与特提斯地质, 22(2): 1-7. doi: 10.3969/j.issn.1009-3850.2002.02.001 [191] 李光明, 杨家瑞, 丁俊, 2003. 西藏雅鲁藏布江成矿区矿产资源评价新进展. 地质通报, 22(9): 699-703. doi: 10.3969/j.issn.1671-2552.2003.09.012 [192] 李应栩, 谢玉玲, 陈伟, 等, 2011. 西藏恰功铁矿二长花岗斑岩锆石的U-Pb年代学与地球化学特征及意义. 岩石学报, 27(7): 2023-2033. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107012.htm [193] 李振清, 侯增谦, 聂凤军, 等, 2005. 藏南上地壳低速高导层的性质与分布: 来自热水流体活动的证据. 地质学报, 79(1): 68-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501007.htm [194] 刘宝君, 陆元法, 薛堂荣, 等, 1998. 热泉热液系统金的成矿地球化学研究. 地球学报, 19(3): 251-260. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB803.004.htm [195] 刘洪, 李光明, 黄瀚霄, 等, 2019a. 冈底斯成矿带西段鲁尔玛斑岩型铜(金)矿床的成矿物质来源研究. 矿床地质, 38(3): 631-643. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201903012.htm [196] 刘洪, 李光明, 黄瀚霄, 等, 2019b. 西藏冈底斯成矿带发现晚三叠世斑岩型铜矿. 中国地质, 46(5): 1238-1240. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201905025.htm [197] 刘洪, 张林奎, 黄瀚霄, 等, 2019c. 冈底斯西段鲁尔玛斑岩型铜(金)矿成矿流体性质及演化. 地球科学, 44(6): 1935-1956. doi: 10.3799/dqkx.2018.370 [198] 刘云飞, 侯增谦, 杨志明, 等, 2011. 西藏弄如日金矿流体包裹体研究. 岩石学报, 27(7): 2150-2158. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107023.htm [199] 刘增乾, 徐宪, 潘桂裳, 等, 1990. 青藏高原大地构造与形成演化. 北京: 地质出版社. [200] 毛景文, 叶会寿, 王瑞廷, 等, 2009. 东秦岭中生代钼铅锌银多金属矿床模型及其找矿评价. 地质通报, 28(1): 72-79. doi: 10.3969/j.issn.1671-2552.2009.01.009 [201] 毛景文, 周振华, 武广, 等, 2013. 内蒙古及邻区矿床成矿规律与成矿系列. 矿床地质, 32(4): 716-730. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201304008.htm [202] 孟祥金, 侯增谦, 高永丰, 等, 2003a. 西藏冈底斯成矿带驱龙铜矿Re-Os年龄及成矿学意义. 地质论评, 49(6): 660-666. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200306016.htm [203] 孟祥金, 侯增谦, 高永丰, 等, 2003b. 西藏冈底斯东段斑岩铜钼铅锌成矿系统的发育时限: 帮浦铜多金属矿床辉钼矿Re-Os年龄证据. 矿床地质, 22(3): 246-252. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200303003.htm [204] 莫宣学, 赵志丹, 邓晋福, 等, 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013 [205] 潘桂棠, 丁俊, 姚东生, 等, 2004. 青藏高原及邻近地区地质图及说明书(1: 1 500 000). 成都: 成都地图出版社. [206] 潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm [207] 钱建平, 黄德阳, 谢彪武, 等, 2013. 西藏谢通门县斯弄多铅锌矿区矿床地质特征和构造地球化学找矿研究. 大地构造与成矿学, 37(1): 29-41. doi: 10.3969/j.issn.1001-1552.2013.01.004 [208] 秦克章, 李光明, 赵俊兴, 等, 2008. 西藏首例独立钼矿——冈底斯沙让大型斑岩钼矿的发现及其意义. 中国地质, 35(6): 1101-1112. doi: 10.3969/j.issn.1000-3657.2008.06.007 [209] 秦克章, 夏代详, 李光明, 等, 2014. 西藏驱龙斑岩-矽卡岩铜钼矿床. 北京: 科学出版社. [210] 秦志鹏, 汪雄武, 多吉, 等, 2011. 西藏甲玛中酸性侵入岩LA-ICP-MS锆石U-Pb定年及成矿意义. 矿床地质, 30(2): 339-348. doi: 10.3969/j.issn.0258-7106.2011.02.014 [211] 曲晓明, 侯增谦, 国连杰, 等, 2004. 冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染: Nd、Sr、Pb、O同位素约束. 地质学报, 78(6): 813-821. doi: 10.3321/j.issn:0001-5717.2004.06.012 [212] 曲晓明, 侯增谦, 李佑国. 2002. 冈底斯碰撞造山带中发现含矿艾达克岩. 矿床地质, 21(增刊1): 215-218. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2002S1062.htm [213] 曲晓明, 侯增谦, 李振清, 2003. 冈底斯铜矿带含矿斑岩的40Ar/39Ar年龄及地质意义. 地质学报, 77(2): 245-252. doi: 10.3321/j.issn:0001-5717.2003.02.013 [214] 曲晓明, 侯增谦, 莫宣学, 等, 2006. 冈底斯斑岩铜矿与南部青藏高原隆升之关系——来自含矿斑岩中多阶段锆石的证据. 矿床地质, 25(4): 388-400. doi: 10.3969/j.issn.0258-7106.2006.04.004 [215] 芮宗瑶, 侯增谦, 李光明, 等, 2006. 冈底斯斑岩铜矿成矿模式. 地质论评, 52(4): 459-466. doi: 10.3321/j.issn:0371-5736.2006.04.004 [216] 芮宗瑶, 侯增谦, 曲晓明, 等, 2003. 冈底斯斑岩铜矿成矿时代及青藏高原隆升. 矿床地质, 22(3): 217-225. doi: 10.3969/j.issn.0258-7106.2003.03.001 [217] 芮宗瑶, 李光明, 张立生, 等, 2004. 西藏斑岩铜矿对重大地质事件的响应. 地学前缘, 11(1): 145-152. doi: 10.3321/j.issn:1005-2321.2004.01.011 [218] 孙祥, 郑有业, 吴松, 等, 2013. 冈底斯明则-程巴斑岩-矽卡岩型Mo-Cu矿床成矿时代与含矿岩石成因. 岩石学报, 29(4): 1392-1406. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201304023.htm [219] 唐菊兴, 陈毓川, 王登红, 等, 2009. 西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义. 地质学报, 83(5): 698-704. doi: 10.3321/j.issn:0001-5717.2009.05.010 [220] 唐菊兴, 邓世林, 郑文宝, 等, 2011. 西藏墨竹工卡县甲玛铜多金属矿床勘查模型. 矿床地质, 30(2): 179-196. doi: 10.3969/j.issn.0258-7106.2011.02.002 [221] 唐菊兴, 黎风佶, 李志军, 等, 2010a. 西藏谢通门县雄村铜金矿主要地质体形成的时限: 锆石U-Pb、辉钼矿Re-Os年龄的证据. 矿床地质, 29(3): 461-475. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201003007.htm [222] 唐菊兴, 王登红, 汪雄武, 等, 2010b. 西藏甲玛铜多金属矿矿床地质特征及其矿床模型. 地球学报, 31(4): 495-506. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201004002.htm [223] 田坎, 郑有业, 高顺宝, 等, 2019. 西藏冈底斯西段帮布勒Pb-Zn-Cu矿床晚白垩世岩浆岩成因及意义. 地球科学, 44(6): 1905-1922. doi: 10.3799/dqkx.2018.349 [224] 王保弟, 许继峰, 陈建林, 等, 2010. 冈底斯东段汤不拉斑岩Mo-Cu矿床成岩成矿时代与成因研究. 岩石学报, 26(6): 1820-1832. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201006016.htm [225] 王亮亮, 莫宣学, 李冰, 等, 2006. 西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学. 岩石学报, 22(4): 1001-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604023.htm [226] 王立强, 唐菊兴, 陈毓川, 等, 2011. 西藏邦铺钼(铜)矿床含矿二长花岗斑岩LA-ICP-MS锆石U-Pb定年及地质意义. 矿床地质, 30(2): 349-360. doi: 10.3969/j.issn.0258-7106.2011.02.015 [227] 魏博, 程顺波, 庞迎春, 2010. 西藏蒙亚啊铅锌矿床成矿年龄及其地质意义. 华南地质与矿产, 26(1): 14-19. doi: 10.3969/j.issn.1007-3701.2010.01.003 [228] 吴松, 2016. 西藏冈底斯朱诺超大型斑岩铜矿床: 岩浆与成矿(博士学位论文). 北京: 中国地质大学. [229] 肖波, 秦克章, 李光明, 等, 2009. 西藏驱龙巨型斑岩Cu-Mo矿床的富S、高氧化性含矿岩浆——来自岩浆成因硬石膏的证据. 地质学报, 83(12): 1860-1868. doi: 10.3321/j.issn:0001-5717.2009.12.005 [230] 肖序常, 李廷栋, 李光岑, 等, 1988. 喜马拉雅岩石圈构造演化总论. 北京: 地质出版社. [231] 辛存林, 都卫东, 张育平, 等, 2013. 西藏洞中松多铅锌多金属矿床地质特征及成因. 兰州大学学报(自然科学版), 49(1): 24-31. doi: 10.3969/j.issn.0455-2059.2013.01.006 [232] 徐净, 郑有业, 孙祥, 等, 2014. 西藏知不拉矽卡岩型铜矿床矿物学特征及地质意义. 地球科学, 39(6): 654-670, 768. doi: 10.3799/dqkx.2014.062 [233] 许志琴, 2006. 青藏高原大陆动力学(1984-2006). 北京: 地质出版社. [234] 许志琴, 李海兵, 杨经绥, 2006. 造山的高原——青藏高原巨型造山拼贴体和造山类型. 地学前缘, 13(4): 1-17. doi: 10.3321/j.issn:1005-2321.2006.04.002 [235] 闫学义, 黄树峰, 杜安道, 2010. 冈底斯泽当大型钨铜钼矿Re-Os年龄及陆缘走滑转换成矿作用. 地质学报, 84(3): 398-406. doi: 10.3969/j.issn.1004-9665.2010.03.017 [236] 杨志明, 2008. 西藏驱龙超大型斑岩铜矿床-岩浆作用与矿床成因(博士学位论文). 北京: 中国地质科学院. [237] 杨志明, 侯增谦, 宋玉财, 等, 2008. 西藏驱龙超大型斑岩铜矿床: 地质、蚀变与成矿. 矿床地质, 27(3): 279-318. doi: 10.3969/j.issn.0258-7106.2008.03.002 [238] 应立娟, 唐菊兴, 王登红, 等, 2011. 西藏甲玛超大型铜矿区斑岩脉成岩时代及其与成矿的关系. 岩石学报, 27(7): 2095-2102. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107018.htm [239] 于玉帅, 高原, 杨竹森, 等, 2011a. 西藏措勤尼雄矿田滚纠铁矿侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征. 岩石学报, 27(7): 1949-1960. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107005.htm [240] 于玉帅, 杨竹森, 多吉, 等, 2011b. 西藏加多捕勒铁铜矿成矿岩体时代与成因: 锆石U-Pb年龄、Hf同位素与稀土元素证据. 矿床地质, 30(3): 420-434. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201103005.htm [241] 于玉帅, 杨竹森, 刘英超, 等, 2012a. 西藏措勤尼雄矿田滚纠铁矿金云母矿物学特征及40Ar-39Ar年代学. 岩石矿物学杂志, 31(5): 681-690. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201205007.htm [242] 于玉帅, 杨竹森, 刘英超, 等, 2012b. 西藏尼雄矿田日阿铜矿床矽卡岩矿物学特征及地质意义. 矿床地质, 31(4): 775-790. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201204010.htm [243] 张宏飞, 徐旺春, 郭建秋, 等, 2007. 冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成: 新特提斯洋早侏罗世俯冲作用的证据. 岩石学报, 23(6): 1347-1353. doi: 10.3969/j.issn.1000-0569.2007.06.011 [244] 张苏坤, 郑有业, 张刚阳, 等, 2013. 西藏曲水县鸡公村石英脉型钼矿床成矿时代约束. 矿床地质, 32(3): 641-648. doi: 10.3969/j.issn.0258-7106.2013.03.014 [245] 张锡根, 1998. 西藏羊八井现代地下热水系统硫矿的成矿作用. 化工矿产地质, 20(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC199801000.htm [246] 赵元艺, 聂凤军, 侯增谦, 等, 2006. 西藏搭格架热泉型铯矿床同位素特征及形成过程. 矿床地质, 25(5): 613-619. doi: 10.3969/j.issn.0258-7106.2006.05.008 [247] 郑绵平, 刘文高, 向军, 等, 1983. 论西藏的盐湖. 地质学报, 57(2): 184-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198302007.htm [248] 郑绵平, 向军, 魏新俊, 等, 1989. 青藏高原盐湖. 北京: 北京科学技术出版社. [249] 郑有业, 次琼, 吴松, 等, 2017. 西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义. 地球科学, 42(9): 1441-1453. doi: 10.3799/dqkx.2017.109 [250] 郑有业, 多吉, 王瑞江, 等, 2007a. 西藏冈底斯巨型斑岩铜矿带勘查研究最新进展. 中国地质, 34(2): 324-334. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200702015.htm [251] 郑有业, 高顺宝, 孙祥, 等, 2013. 西藏驱龙超大型斑岩型铜钼矿床. 北京: 地质出版社. [252] 郑有业, 高顺宝, 张大全, 等, 2006. 西藏朱诺斑岩铜矿床发现的重大意义及启示. 地学前缘, 13(4): 233-239. doi: 10.3321/j.issn:1005-2321.2006.04.021 [253] 郑有业, 王保生, 樊子珲, 等, 2002. 西藏冈底斯东段构造演化及铜金多金属成矿潜力分析. 地质科技情报, 21(2): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200202013.htm [254] 郑有业, 薛迎喜, 程力军, 等, 2004. 西藏驱龙超大型斑岩铜(钼)矿床: 发现、特征及意义. 地球科学, 29(1): 103-108. doi: 10.3321/j.issn:1000-2383.2004.01.018 [255] 郑有业, 张刚阳, 高顺宝, 等, 2008. 西藏沙让斑岩型钼矿床的发现意义及成岩成矿时代约束. 北京: 第九届全国矿床会议论文集, 674-676. [256] 郑有业, 张刚阳, 许荣科, 等, 2007b. 西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束. 科学通报, 52(21): 2542-2548. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200721014.htm [257] 周详, 曹佑功, 朱明玉, 等, 1984. 西藏板块构造-建造图 1: 1 500 000. 北京: 地质出版社.