• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    片麻岩穹窿与伟晶岩型锂矿的成矿规律探讨

    许志琴 付小方 赵中宝 李广伟 郑艺龙 马泽良

    许志琴, 付小方, 赵中宝, 李广伟, 郑艺龙, 马泽良, 2019. 片麻岩穹窿与伟晶岩型锂矿的成矿规律探讨. 地球科学, 44(5): 1452-1463. doi: 10.3799/dqkx.2019.042
    引用本文: 许志琴, 付小方, 赵中宝, 李广伟, 郑艺龙, 马泽良, 2019. 片麻岩穹窿与伟晶岩型锂矿的成矿规律探讨. 地球科学, 44(5): 1452-1463. doi: 10.3799/dqkx.2019.042
    Xu Zhiqin, Fu Xiaofang, Zhao Zhongbao, Li Guangwei, Zheng Yilong, Ma Zeliang, 2019. Discussion on Relationships of Gneiss Dome and Metallogenic Regularity of Pegmatite-Type Lithium Deposits. Earth Science, 44(5): 1452-1463. doi: 10.3799/dqkx.2019.042
    Citation: Xu Zhiqin, Fu Xiaofang, Zhao Zhongbao, Li Guangwei, Zheng Yilong, Ma Zeliang, 2019. Discussion on Relationships of Gneiss Dome and Metallogenic Regularity of Pegmatite-Type Lithium Deposits. Earth Science, 44(5): 1452-1463. doi: 10.3799/dqkx.2019.042

    片麻岩穹窿与伟晶岩型锂矿的成矿规律探讨

    doi: 10.3799/dqkx.2019.042
    基金项目: 

    中国地质调查局项目 1212010818094

    国家自然基金重点项目 40921001

    南京大学人才基金项目 020614912202

    国土资源部行业基金项目 41430212

    详细信息
      作者简介:

      许志琴(1941-), 女, 中国科学院院士, 南京大学教授, 长期从事构造地质学和大陆动力学研究工作

    • 中图分类号: P54

    Discussion on Relationships of Gneiss Dome and Metallogenic Regularity of Pegmatite-Type Lithium Deposits

    • 摘要: “片麻岩穹窿”是指中下地壳热动力过程产生的与岩浆作用(或混合岩化作用)密切相关的穹状构造,是折返造山的产物.片麻岩穹窿的形成经历了从垂直上升的地壳流导致的岩浆上涌的挤压收缩到岩体侵位的顶部伸展机制的转化过程,这一过程有利于富含锂-铯-钽型(LCT)型伟晶岩的生成和锂族元素的富集.研究表明,位于青藏高原北部的中国松潘-甘孜-甜水海印支造山带是中国大型"伟晶岩型"锂矿资源赋存的基地,松潘-甘孜东南部的超大型甲基卡型伟晶岩型锂矿带,产于具有巴罗式"低/中压-高温"变质组合的三叠纪复理石围岩中,早中生代花岗岩以及衍生的大量含锂稀土矿物的伟晶岩脉侵位有成因关系.研究认为,探究片麻岩穹窿的形成过程和构造成因机制;识别花岗岩-含矿伟晶岩的地球化学属性,揭示花岗岩浆分异作用与含矿伟晶岩相演变的成因联系,以及锂元素迁移、富集熔浆的过程;圈定三叠纪地层中巴罗式变质相带的展布,探明富锂伟晶岩矿带赋存的有利变质相带及形成的P-T条件;揭示"变形-变质-岩浆深熔-成矿"的时空耦合、制约与相互作用,再造造山过程中锂资源富集和保存的规律,以及建立成矿动力学模式;是揭示片麻岩穹窿与伟晶岩型锂矿的成矿规律的重要科学途径.

       

    • 图  1  片麻岩穹窿的结构示意

      Whitney et al.(2004);核部为混合岩化的花岗岩,边部为花岗片麻岩,幔部为变质岩和层叠褶皱;箭头代表剪切指向

      Fig.  1.  Schematic diagram of the structure of gneiss dome

      图  2  北-中帕米尔片麻岩穹窿群示意

      Schmidt et al.(2011);A.空喀山穹窿;B.慕孜塔格穹窿;C.Yazgulom穹窿;D.Muskol穹窿

      Fig.  2.  Schematic diagram of the North-Central Pamir gneiss dome group

      图  3  松潘-甘孜造山带雅江片麻岩穹窿群分布

      许志琴等(1992);1.矽线石带;2.十字石带;3.红柱石带;4.石榴石带;5.黑云母带;6.花岗岩

      Fig.  3.  Distribution of the Yajiang gneiss dome group in the Songpan-Ganzi orogenic belt

      图  4  位于青藏高原北部的松潘-甘孜-甜水海地体位置

      1.松潘-甘孜-甜水海造山带的三叠系;2.松潘-甘孜造山带中新元古代-古生代地层;3.锂矿带位置;4.周围地体;5.缝合带;6.逆冲断裂;7.走滑断裂;TRMB.塔里木盆地;WKL.西昆仑;KKF.喀喇昆仑断裂;NCB.北中国陆块;NQLT.北祁连逆冲断裂;EKL-QDM-QL.东昆仑-柴达木-祁连地体;EKL-ANMQS.东昆仑-阿尼玛卿缝合带;JSJ-ALSS.金沙江-哀牢山缝合带;QT.羌塘地体;LMST.龙门山逆冲断裂;YZB.扬子陆块

      Fig.  4.  Location of the Songpan-Ganzi-Tianshuihai terrane in the northern part of the Qinghai-Tibet Plateau

      图  5  甲基卡锂矿床的矿田地质简图

      梁斌等(2016);1.马颈子二云母花岗岩;2.微斜长石型伟晶岩;3.微斜长石钠长石型伟晶岩;4.钠长石型伟晶岩;5.钠长石锂辉石型伟晶岩;6.钠长锂云母型伟晶岩脉及编号;7.伟晶岩脉类型分带线;8.核部花岗岩基;9.伟晶岩脉类型分带线;X03.巨型伟晶岩脉

      Fig.  5.  Schematic diagram of the ore field of the Jiajika lithium deposit

      图  6  雅江甲基卡片麻岩穹窿的E-W向构造示意剖面

      付小方等(2017);1.上三叠统变质含碳泥质粉砂岩与粉砂岩互层;2.印支期二云母花岗岩;3.花岗伟晶岩脉及编号;4.十字石变质带;5.十字石、红柱石变质带;6.电气石、堇青石接触变质带

      Fig.  6.  E-W cross-section of the Jiajika gneiss dome

      图  7  甲基卡X03伟晶岩脉15号勘探线和邻区No.309孔连接剖面

      付小方等(2017);1.第四系;2.十字石-红柱石二云母片岩;3.堇青石化十字石-红柱石二云母片岩;4.花岗岩细晶岩;5.钠长锂辉石伟晶岩;6.电气石化角岩带

      Fig.  7.  Cross-section view of the Jiajika X03 pegmatite vein and adjacent No. 309 drilling hole

      图  8  马尔康片麻岩穹窿地质图

      de Sigoyer et al.(2014);该穹窿包括可尔因二云母花岗岩(粉红色)片麻岩穹窿和太阳河黑云母二长花岗岩(蓝色和绿色)片麻岩穹窿

      Fig.  8.  Geological map of the Markam gneiss dome

      图  9  马尔康穹窿群的变质相带图

      Zhao et al.(2019);自花岗岩体的幔部变质岩自内向外分别为矽线石-蓝晶石带、石榴石-十字石带、黑云母-红柱石带和白云母-绿泥石带

      Fig.  9.  Metamorphic phase diagram of the Markam gneiss dome

      图  10  造山过程中变形-变质-岩浆深熔之间关系示意

      Fig.  10.  Schematic diagram of the relationship among deformation-metamorphism-anatexis during orogenic process

      图  11  伟晶岩分类的铝硅酸盐相图

      London(2008);根据结晶温度估算显示,在含锂辉石-透锂辉石的伟晶岩和晶洞型伟晶岩均可在低温低压区形成

      Fig.  11.  Aluminum silicate phase diagram showing pegmatite classes

      图  12  形成在花岗岩体上部的锂-铯-钽(LCT)伟晶岩分带

      London(2018);显示花岗岩相边部及其上部依次出现含铯榴石伟晶岩(Ceramic pegmatite)、含绿柱石伟晶岩(Beryl pegmatite)、含锂辉石伟晶岩(Spondumene pegmatite)、含透锂辉石伟晶岩(petalite pegmatite)和含锂-铯-钽的晶洞型伟晶岩(Li-Cs-Tamiarolitic pegmatite)形成的等温线、压力和深度区间

      Fig.  12.  Regional zonation within a pegmatite group of the LCT family

      图  13  可尔因花岗-伟晶岩的岩浆分异记录

      李建康(2006)

      Fig.  13.  Magmatic differentiation of the Keeryin granite-pegmatite

    • [1] Arnold, J., Sandiford, M., Wetherley, S., 1995.Metamorphic Events in the Eastern Arunta Inlier:Part 1.Metamorphic Petrology.Precambrian Research, 71(1-4):183-205. https://doi.org/10.1016/0301-9268(94)00061-u
      [2] Ayarza, P., Martínez Catalán, J.R., 2007.Potential Field Constraints on the Deep Structure of the Lugo Gneiss Dome (NW Spain).Tectonophysics, 439(1-4):67-87. https://doi.org/10.1016/j.tecto.2007.03.007
      [3] Beaumont, C., Jamieson, R.A., Nguyen, M.H., et al., 2001.Himalayan Tectonics Explained by Extrusion of a Low-Viscosity Crustal Channel Coupled to Focused Surface Denudation.Nature, 414(6865):738-742. https://doi.org/10.1038/414738a
      [4] Bradley, D.C., McCauley, A.D., Stillings, L.L., 2017.Mineral Deposit Model for Lithium-Cesium-Tantalum Pegmatites in Mineral Deposit Models for Resource Assessment.In: Scientific Investigations Report 2010-5070-O.U.S.Geological Survey, New York.https://doi.org/10.3133/sir20105070O
      [5] Brown, M., 2007.Crustal Melting and Melt Extraction, Ascent and Emplacement in Orogens:Mechanisms and Consequences.Journal of the Geological Society, 164(4):709-730. https://doi.org/10.1144/0016-76492006-171
      [6] Burchfiel, B.C., Nakov, R., Dumurdzanov, N., et al., 2008.Evolution and Dynamics of the Cenozoic Tectonics of the South Balkan Extensional System.Geosphere, 4(6):919-938. https://doi.org/10.1130/ges00169.1
      [7] Burg, J.P., Davy, P., Nievergelt, P., et al., 1997.Exhumation during Crustal Folding in the Namche-Barwa Syntaxis.Terra Nova, 9(2):53-56. https://doi.org/10.1111/j.1365-3121.1997.tb00001.x
      [8] Burg, J.P., Kaus, B.J.P., Podladchikov, Y.Y., 2004.Dome Structures in Collision Orogens:Mechanical Investigation of the Gravity/Compression Interplay.Geological Society of America Special Paper, 380:47-66.
      [9] Calvert, A.T., Gans, P.B., Amato, J.M., 1999.Diapiric Ascent and Cooling of a Sillimanite Gneiss Dome Revealed by 40Ar/39Ar Thermochronology:The Kigluaik Mountains, Seward Peninsula, Alaska.Geological Society, London, Special Publications, 154(1):205-232. https://doi.org/10.1144/gsl.sp.1999.154.01.09
      [10] Chardon, D., Choukroune, P., Jayananda, M., 1998.Sinking of the Dharwar Basin (South India):Implications for Archaean Tectonics.Precambrian Research, 91(1-2):15-39. https://doi.org/10.1016/s0301-9268(98)00037-0
      [11] Crowley, J.L., Brown, R.L., Parrish, R.R., 2001.Diachronous Deformation and a Strain Gradient beneath the Selkirk Allochthon, Northern Monashee Complex, Southeastern Canadian Cordillera.Journal of Structural Geology, 23(6-7):1103-1121. https://doi.org/10.1016/s0191-8141(00)00179-6
      [12] de Sigoyer, J., Vanderhaeghe, O., Duchêne, S., et al., 2014.Generation and Emplacement of Triassic Granitoids within the Songpan Ganze Accretionary-Orogenic Wedge in a Context of Slab Retreat Accommodated by Tear Faulting, Eastern Tibetan Plateau, China.Journal of Asian Earth Sciences, 88:192-216. https://doi.org/10.1016/j.jseaes.2014.01.010
      [13] Dong, H.W., Xu, Z.Q., Cao, H., et al., 2018.Comparison of Eastern and Western Boundary Faults of Eastern Himalayan Syntaxis, and Its Tectonic Evolution.Earth Science, 43(4):933-951(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201804002
      [14] Duncan, I.J., 1984.Structural Evolution of the Thor-Odin Gneiss Dome.Tectonophysics, 101(1-2):87-130. https://doi.org/10.1016/0040-1951(84)90044-1
      [15] Edwards, M.A., Kidd, W.S.F., Schneider, D.A., 2002.A Guide to Dome Improvement:Lesson 1.Is Your Dome Built on Granite or Gneiss?.Geological Society of America Abstracts with Programs, 34(6):109. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705015
      [16] Eskola, P.E., 1948.The Problem of Mantled Gneiss Domes.Quarterly Journal of the Geological Society, 104(1-4):461-476. https://doi.org/10.1144/gsl.jgs.1948.104.01-04.21
      [17] Fei, G.C., Li, B.H., Yang, J.Y., et al., 2017.Geology, Fluid Inclusion Characteristics and H-O-C Isotopes of Large Lijiagou Pegmatite Spodumene Deposit in Songpan-Garze Fold Belt, Eastern Tibet:Implications for Ore Genesis.Resource Geology, 68(1):37-50. https://doi.org/10.1111/rge.12145
      [18] Fisher, G.W., Olsen, S.N., 2004.The Baltimore Gneiss Domes of the Maryland Piedmont.Geological Society of America Special Paper, 380:307-320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=22e7f4374e84fd115ad18e49e5360ae9
      [19] Fletcher, R.C., 1972.Application of a Mathematical Model to the Emplacement of Mantled Gneiss Domes.American Journal of Science, 272(3):197-216. https://doi.org/10.2475/ajs.272.3.197
      [20] Fletcher, R.C., Hallet, B., 2004.Initiation of Gneiss Domes by Necking, Density Instability, and Erosion.Geological Society of America Special Paper, 380:79-95. https://pubs.geoscienceworld.org/books/book/531/chapter/3801619/Initiation-of-gneiss-domes-by-necking-density
      [21] Fu, X.F., Hou, L.W., Liang, B., et al., 2017.Jiajika-Type Granite-Pegmatite Lithium Deposit:Metallogenic Model and Three-Dimensional Prospecting Model.Science Press, Beijing (in Chinese).
      [22] Fu, X.F., Hou, L.W., Wang, D.H., et al., 2014.Achievements in the Investigation and Evaluation of Spodumene Resources at Jiajika in Sichuan, China.Geological Survey of China, 1(3):37-43(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzdc201403006
      [23] Fu, X.F., Yuan, L.P., Wang, D.H., et al., 2015.Mineralization Characteristics and Prospecting Model of Newly Discovered X03 Rare Metal Vein in Jiajika Orefield, Sichuan.Mineral Deposits, 34(6):1172-1186(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201506007
      [24] Gao, L.E., Zeng, L.S., Xie, K.J., 2011.Eocene High Grade Metamorphism and Crustal Anatexis in the North Himalaya Gneiss Domes, Southern Tibet.Chinese Science Bulletin, 56(36):3078-3090(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JXTW201206013.htm
      [25] Gervais, F., Nadeau, L., Malo, M., 2004.Migmatitic Structures and Solid-State Diapirism in Orthogneiss Domes, Eastern Grenville Province, Canada.Geological Society of America Special Paper, 380:359-378.
      [26] Gu, P.Y., He, S.P., Li, R.S., et al., 2013.Geochemical Features and Tectonic Significance of Granitic Gneiss of Laguigangri Metamorphic Core Complexes in Southern Tibet.Acta Petrologica Sinica, 29(3):756-768(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303002
      [27] Guo, L., Zhang, J.J., Zhang, B., 2008.Structures, Kinematics, Thermochronology and Tectonic Evolution of the Ramba Gneiss Dome in the Northern Himalaya.Progress in Natural Science, 18(7):851-860. https://doi.org/10.1016/j.pnsc.2008.01.016
      [28] Huang, T., Fu, X.F., Yang, R., et al., 2018.The Application of Ground-Penetrating Radar to Ore Exploration in the Jiajika Rare Metal Orefield.Geophysical & Geochemical Exploration, 42(2):316-324(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/wtyht201802013
      [29] Jolivet, L., Famin, V., Mehl, C., et al., 2004.Strain Localization during Crustal-Scale Boudinage to Form Extensional Metamorphic Domes in the Aegean Sea.Geological Society of America Special Paper, 380:185-210. https://pubs.geoscienceworld.org/books/book/531/chapter/3801701/
      [30] Lagarde, J.L., Dallain, C., Ledru, P., et al., 1994.Strain Patterns within the Late Variscan Granitic Dome of Velay, French Massif Central.Journal of Structural Geology, 16(6):839-852. https://doi.org/10.1016/0191-8141(94)90149-x
      [31] Lee, J., Hacker, B.R., Dinklage, W.S., et al., 2000.Evolution of the Kangmar Dome, Southern Tibet:Structural, Petrologic, and Thermochronologic Constraints.Tectonics, 19(5):872-895. https://doi.org/10.1029/1999tc001147
      [32] Li, J.K., 2006.Formation Mechanism and Continental Dynamics Background of Typical Pegmatite Deposits in Western Sichuan (Dissertation).China University of Geosciences, Beijing.
      [33] Li, J.K., Zou, T.R., Liu, X.F., et al., 2015.The Metallogenetic Regularities of Lithium Deposits in China.Acta Geologica Sinica (English Edition), 89(2):652-670. https://doi.org/10.1111/1755-6724.12453
      [34] Liang, B., Fu, X.F., Tang, Y., et al., 2016.Granite Geochemical Characteristics in Jiajika Rare Metal Deposit, Western Sichuan.Journal of Guilin University of Technology, 36(1):42-49(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=glgxy201601007
      [35] London, D., 2008.Pegmatites.Canadian Mineralogist Special Publication, 10:368. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228517463/
      [36] London, D., 2018.Ore-Forming Processes within Granitic Pegmatites.Ore Geology Reviews, 101:349-383. https://doi.org/10.1016/j.oregeorev.2018.04.020
      [37] London, D., Manning, D.A.C., 1995.Chemical Variation and Significance of Tourmaline from Southwest England.Economic Geology, 90(3):495-519. https://doi.org/10.2113/gsecongeo.90.3.495
      [38] Mattauer, M., Malavielle, J., Calassou, S., et al, .1992.La cha ne Triasique de Songpan-Ganze (Oust Sichun at East Tibet):Une cha ne de Plissment-Decollement sur Marge Passive.Translated Title:A Decollement-Fold Belt on a Passive Margin.Comptes Rendus de I' Academie des Sciences Paris, 314(6):619-626.
      [39] Ramsay, J.G., Huber, M.I., 1983.The Techniques of Modern Structural Geology.Volume 2:Folds and Fractures.Academic Press, London.
      [40] Reesor, J.E., Moore, J.M., 1971.Thor-Odin Dome, Shuswap Metamorphic Complex, British Columbia.Geological Survey of Canada Bulletin, 195:146. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023433086/
      [41] Rey, P., 2001.From Lithospheric Thickening and Divergent Collapse to Active Continental Rifting.Geological Society, London, Special Publications, 184(1):77-88. doi: 10.1144/GSL.SP.2001.184.01.05
      [42] Roger, F., Jolivet, M., Malavieille, J., 2010.The Tectonic Evolution of the Songpan-Garzê(North Tibet) and Adjacent Areas from Proterozoic to Present:A Synthesis.Journal of Asian Earth Sciences, 39(4):254-269. https://doi.org/10.1016/j.jseaes.2010.03.008
      [43] Roger, F., Malavieille, J., Leloup, P.H., et al., 2004.Timing of Granite Emplacement and Cooling in the Songpan-Garzê Fold Belt (Eastern Tibetan Plateau) with Tectonic Implications.Journal of Asian Earth Sciences, 22(5):465-481. https://doi.org/10.1016/s1367-9120(03)00089-0
      [44] Schmidt, J., Hacker, B.R., Ratschbacher, L., et al., 2011.Cenozoic Deep Crust in the Pamir.Earth and Planetary Science Letters, 312(3-4):411-421. doi: 10.1016/j.epsl.2011.10.034
      [45] Siddoway, C.S., Richard, S.M., Fanning, C.M., et al., 2004.Origin and Emplacement of a Middle Cretaceous Gneiss Dome, Fosdick Mountains, West Antarctica.Geological Society of America Special Paper, 380:267-294. https://pubs.geoscienceworld.org/books/book/531/chapter/3801772/Origin-and-emplacement-of-a-middle-Cretaceous
      [46] Soula, J.C., 1982.Characteristics and Mode of Emplacement of Gneiss Domes and Plutonic Domes in Central-Eastern Pyrenees.Journal of Structural Geology, 4(3):313-342. https://doi.org/10.1016/0191-8141(82)90017-7
      [47] Stípská, P., Schulmann, K., Höck, V., 1999.Complex Metamorphic Zonation of the Thaya Dome:Result of Buckling and Gravitational Collapse of an Imbricated Nappe Sequence.Geological Society, London, Special Publications, 169(1):197-211. https://doi.org/10.1144/gsl.sp.2000.169.01.15
      [48] Stübner, K., Ratschbacher, L., Weise, C., et al., 2013.The Giant Shakhdara Migmatitic Gneiss Dome, Pamir, India-Asia Collision Zone:2.Timing of Dome Formation.Tectonics, 32(5):1404-1431. https://doi.org/10.1002/tect.20059
      [49] Teyssier, C., Whitney, D.L., 2002.Gneiss Domes and Orogeny.Geology, 30(12):1139-1142.https://doi.org/10.1130/0091-7613(2002)030<1139:gdao>2.0.co;2 doi: 10.1130/0091-7613(2002)030<1139:gdao>2.0.co;2
      [50] Tirel, C., Brun, J.P., Burov, E., 2006.Thermomechanical Modeling of Extensional Gneiss Domes.Geological Society of America Special Paper, 380:67-78. https://pubs.geoscienceworld.org/books/book/531/chapter/3801610/Thermomechanical-modeling-of-extensional-gneiss
      [51] Vanderhaeghe, O., 2004.Structural Development of the Naxos Migmatite Dome.Geological Society of America Special Paper, 380:211-227. https://pubs.geoscienceworld.org/books/book/531/chapter/3801723/
      [52] Vanderhaeghe, O., Teyssier, C., Wysoczanski, R., 1999.Structural and Geochronological Constraints on the Role of Partial Melting during the Formation of the Shuswap Metamorphic Core Complex at the Latitude of the Thor-Odin Dome, British Columbia.Canadian Journal of Earth Sciences, 36(6):917-943. https://doi.org/10.1139/e99-023
      [53] Wang, D.H., Liu, L.J., Hou, J.L., et al., 2017.A Preliminary Review of the Application of "Five Levels+Basement" Model for Jiajika-Style Rare Metal Deposits.Earth Science Frontiers, 24(5):1-7(in Chinese with English abstract).
      [54] Wernicke, B., 1981.Low-Angle Normal Faults in the Basin and Range Province:Nappe Tectonics in an Extending Orogen.Nature, 291(5817):645-648. https://doi.org/10.1038/291645a0
      [55] Whitney, D.L., Teyssier, C., Vanderhaeghe, O., 2004.Gneiss Domes and Crustal Flow.Geological Society of America Special Papers, 380:15-33. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232407447/
      [56] Xiao, L., Zhang, H.F., Clemens, J.D., et al., 2007.Late Triassic Granitoids of the Eastern Margin of the Tibetan Plateau:Geochronology, Petrogenesis and Implications for Tectonic Evolution.Lithos, 96(3-4):436-452. https://doi.org/10.1016/j.lithos.2006.11.011
      [57] Xu, Z.Q., Hou, L.W., Wang, Z.X., et al., 1992.The Orogenic Process of Songpan-Ganzi Orogenic Belt in China.Geological Press, Beijing.
      [58] Xu, Z.Q., Ma, X.X., 2015.The Chinese Phanerozoic Gneiss Domes:Subduction-Related Type, Collision-Related Type and Combination Type of Subduction-Collision.Acta Petrologica Sinica, 31(12):3509-3523(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512001
      [59] Yuan, C., Zhou, M.F., Sun, M., et al., 2010.Triassic Granitoids in the Eastern Songpan-Ganzi Fold Belt, SW China:Magmatic Response to Geodynamics of the Deep Lithosphere.Earth and Planetary Science Letters, 290(3-4):481-492. doi: 10.1016/j.epsl.2010.01.005
      [60] Zhang, H.F., Parrish, R., Zhang, L., et al., 2007.A-Type Granite and Adakitic Magmatism Association in Songpan-Garze Fold Belt, Eastern Tibetan Plateau:Implication for Lithospheric Delamination.Lithos, 97(3-4):323-335. https://doi.org/10.1016/j.lithos.2007.01.002
      [61] Zhang, H.F., Zhang, L., Harris, N., et al., 2006.U-Pb Zircon Ages, Geochemical and Isotopic Compositions of Granitoids in Songpan-Garze Fold Belt, Eastern Tibetan Plateau:Constraints on Petrogenesis and Tectonic Evolution of the Basement.Contributions to Mineralogy and Petrology, 152(1):75-88. https://doi.org/10.1007/s00410-006-0095-2
      [62] Zhang, J.Y., Liao, Q.A., Li, D.W., et al., 2003.Laguigangri Leucogranites and Its Relation with Laguigangri Metamorphic Core Complex in Sajia, South Tibet.Earth Science, 28(6):695-701(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200306018
      [63] Zhang, Z.M., Zhao, G.C., Santosh, M., et al., 2010.Late Cretaceous Charnockite with Adakitic Affinities from the Gangdese Batholith, Southeastern Tibet:Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction?.Gondwana Research, 17(4):615-631. https://doi.org/10.1016/j.gr.2009.10.007
      [64] Zhao, Z.B., Du, J.X., Liang, F.H., et al., 2019.Structure and Metamorphism of Markam Gneiss Dome from the Eastern Tibetan Plateau and Its Implications for Crustal Thickening, Metamorphism, and Exhumation.Geochemistry, Geophysics, Geosystems, 20(1):24-45. https://doi.org/10.1029/2018gc007617
      [65] 董汉文, 许志琴, 曹汇, 等, 2018.东喜马拉雅构造结东、西边界断裂对比及其构造演化过程.地球科学, 43(4):933-951. http://earth-science.net/WebPage/Article.aspx?id=3779
      [66] 付小方, 侯立玮, 梁斌, 等, 2017.甲基卡式花岗伟晶岩型锂矿床:成矿模式与三维勘察找矿模型.北京:科学出版社.
      [67] 付小方, 侯立玮, 王登红, 等, 2014.四川甘孜甲基卡锂辉石矿矿产调查评价成果.中国地质调查, 1(3):37-43. http://d.old.wanfangdata.com.cn/Periodical/zgdzdc201403006
      [68] 付小方, 袁蔺平, 王登红, 等, 2015.四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘查模型.矿床地质, 34(6):1172-1186. http://d.old.wanfangdata.com.cn/Periodical/kcdz201506007
      [69] 高利娥, 曾令森, 谢克家, 2011.北喜马拉雅片麻岩穹窿始新世高级变质和深熔作用的厘定.科学通报, 56(36):3078-3090. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201136008
      [70] 辜平阳, 何世平, 李荣社, 等, 2013.藏南拉轨岗日变质核杂岩核部花岗质片麻岩的地球化学特征及构造意义.岩石学报, 29(3):756-768. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303002
      [71] 黄韬, 付小方, 杨荣, 等, 2018.探地雷达在甲基卡稀有金属矿田找矿的应用.物探与化探, 42(2):316-324. http://d.old.wanfangdata.com.cn/Periodical/wtyht201802013
      [72] 李建康, 2006.川西典型伟晶岩型矿床的形成机理及其大陆动力学背景(博士学位论文).北京: 中国地质大学.
      [73] 梁斌, 付小方, 唐屹, 等, 2016.川西甲基卡稀有金属矿区花岗岩岩石地球化学特征.桂林理工大学学报, 36(1):42-49. doi: 10.3969/j.issn.1674-9057.2016.01.007
      [74] 王登红, 刘丽君, 侯江龙, 等, 2017.初论甲基卡式稀有金属矿床"五层楼+地下室"勘查模型.地学前缘, 24(5):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201705002.htm
      [75] 许志琴, 候立玮, 王宗秀, 等, 1992.中国松潘-甘孜造山带的造山过程.北京:地质出版社.
      [76] 许志琴, 马绪宣, 2015.中国大陆显生宙俯冲型、碰撞型和复合型片麻岩穹窿(群).岩石学报, 31(12):3509-3523. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512001
      [77] 张金阳, 廖群安, 李德威, 等, 2003.藏南萨迦拉轨岗日淡色花岗岩特征及与变质核杂岩的关系.地球科学, 28(6):695-701. doi: 10.3321/j.issn:1000-2383.2003.06.018
    • 加载中
    图(13)
    计量
    • 文章访问数:  6401
    • HTML全文浏览量:  2207
    • PDF下载量:  210
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-03-08
    • 刊出日期:  2019-05-15

    目录

      /

      返回文章
      返回