Petrogenesis and Tectonic Significance of Carboniferous Volcanic Rocks in Northern Alxa and Its Neighboring Areas, Inner Mongolia, China
-
摘要: 阿拉善北部地区石炭纪火山岩分布广泛, 目前对其成因和构造环境研究还很薄弱.通过对该区石炭纪火山岩岩石学和地球化学特征的分析, 探讨其岩石成因和形成时的构造背景, 为判定石炭纪盆地性质与古构造环境提供岩石地球化学约束.研究区内石炭纪火山岩主要为中-酸性火山岩, 少量基性火山岩.玄武岩、玄武安山岩的大多数样品显示亚碱性系列特征, Mg#介于0.29~0.69之间, 高场强元素Nb、Ta、Ti明显亏损, 岩石轻度富集轻稀土元素(LREE), (La/Yb)N=2.19~10.10, Eu异常不明显(δEu=0.81~1.08), 稀土配分曲线右倾较缓, εNd(t)值较高(+1.10~+6.35).总体上既显示板内构造环境特征, 又携带俯冲带地球化学印记.综合区域地质特征及前人研究结果, 认为阿拉善北部及其邻区石炭纪火山岩形成于板内裂谷环境, 且可能与地幔柱事件有关, 岩浆在上升过程中受到地壳物质不同程度的混染.Abstract: Carboniferous volcanic rocks are widely distributed in northern Alashan League and its neighboring areas, and their genesis and tectonic setting have always been an issue of controversy. Based on analysis of petrology and petrogeochemistry characteristics of Carboniferous volcanic rocks in the study area, this paper attempts to clarify the palaeo-tectonic setting and provides independent evidence for understanding the properties of Carboniferous basin. The volcanic rocks are dominated by intermediate-acidic volcanic rock. The majority of basalts, basaltic-andesite and andesite fall into sub-alkaline series. Mg# number of this suit ranges from 0.29 to 0.69. These volcanic rocks samples exhibit strong depletion in the high field strength elements Nb, Ta and Ti, and minor enrichment in the LREE. In terms of REE, (La/Yb)N number ranges from 2.19 to 10.10, showing less obvious Eu depletion (δEu=0.81 to 1.08), and slightly right-inclined REE distribution patterns, with higher εNd(t) value (+1.10 to +6.35). The samples show not only the marks of those within plate setting as a whole, but also those of subduction zone. Combining with the regional geological characteristic, we conclude that the Carboniferous magmatic activity in the study area generated in a within-plate setting, with variable degrees of contamination of crust during magma ascending, and probably related to mantle plume event.
-
Key words:
- Alxa /
- Carboniferous /
- volcanic rocks /
- petrogeochemistry /
- tectonics
-
图 1 阿拉善北部及其邻区构造地质简图(区域大地构造小图, 据任纪舜等, 1999)
Ⅰ.萨彦-额尔古纳造山带;Ⅱ.蒙古-鄂霍次克造山带;Ⅲ.天山兴安造山带;Ⅳ.昆仑-祁连-秦岭造山系;Ⅴ.滇藏造山带;①额尔齐斯-佐伦-黑河缝合带;②天山南缘缝合带;③雅鲁藏布缝合带
Fig. 1. Simplified geological map of northern Alxa and its neighboring areas
图 2 阿拉善北部及其邻区石炭纪火山岩的(Na2O+K2O)-SiO2岩石分类图解(a)(据Le Bas et al., 1986)和Zr/TiO2-Nb/Y岩石分类图解(b)(据Winchester and Floyd, 1976)
Fig. 2. TAS diagram(a) and Zr/ TiO2-Nb/Y diagram(b) of Carboniferous volcanics from the study area
图 3 阿拉善北部及其邻区石炭纪火山岩样品的稀土元素配分图(a)和微量元素蛛网图(b)
球粒陨石REE数据、原始地幔和OIB(洋岛玄武岩)数据据Sun and McDonough(1989);俯冲带玄武岩数据据Tatsumi and Eggins(1995)
Fig. 3. Chondrite-normalized REE diagram (a) and Primitive mantle-normalized spidergram (b) of Carboniferous volcanics from the study area
图 4 阿拉善北部及其邻区石炭纪火山岩样品Zr/Nb-Ce/Yb图解(a)和La/Sm-Th/Nb图解(b)
N-MORB.亏损MORB;E-MORB.富集MORB;PM.原始地幔;Buck Crust.大陆地壳.其中,N-MORB,E-MORB,NM,OIB数据引自Sun and McDonough(1989);Buck Crust数据引自Rudnick and Gao(2003)
Fig. 4. Zr/Nb-Ce/Yb diagram (a) and La/Sm-Th/Nb diagram (b) of Carboniferous volcanics from the study area
图 5 阿拉善北部及其邻区石炭纪火山岩样品的构造判别图
a.Zr/Y-Zr判别图(据Pearce et al., 1979);b.V-Ti判别图(据Shervais, 1982);c.Zr-Nb-Y判别图(据Meschede,1986),其中,AI.为板内碱性玄武岩;AII.板内碱性玄武岩和板内拉斑玄武岩;B.E型MORB;C.板内拉斑玄武岩和火山弧玄武岩;D.N型MORB和火山弧玄武岩;d.Th-Hf-Ta判别图(据Wood,1980),其中,A.N型MORB;B.E型MORB和板内拉斑玄武岩;C.板内碱性玄武岩;D.火山弧玄武岩,其中岛弧拉斑玄武岩的Hf/Th>3,而钙碱性玄武岩的Hf/Th<3
Fig. 5. Tectonic discrimination diagrams of Carboniferous volcanics from the study area
图 6 阿拉善北部及其邻区石炭纪火山岩样品的Zr/Nb-Nb/Th图解(a)和Nb/Y-Zr/Y图解(b)
PM.原始地幔; DM.亏损地幔; DEP.亏损组分; UC.上地壳; EMⅠ.富集地幔Ⅰ型; EMⅡ.富集地幔Ⅱ型; HIMU.高μ值地幔; REC.循环组分(底图据Condie, 2005)
Fig. 6. Zr/Nb-Nb/Th diagram(a) and Nb/Y-Zr/Ydiagram(b) of Carboniferous volcanics from the study area
图 7 阿拉善北部及其邻区石炭纪火山岩样品的(Tb/Yb)N-(La/Sm)N图解(Xu et al., 2001) (a)和La/Sm-Sm/Yb图解(Lassiter and DePaolo, 1997;PM, DMM, CLM数据据McDonough, 1990)(b)
PM.原始地幔; DMM.亏损地幔; CLM.大陆岩石圈地幔
Fig. 7. (Tb/Yb)N-(La/Sm)N diagram(a) and La/Sm-Sm/Yb diagram(b) of Carboniferous volcanics from the study area
表 1 研究区石炭纪火山岩主量元素(%)、稀土和微量元素(10-6)分析结果
Table 1. Major elements (%), REE and trace elements(10-6) analyses of Carboniferous volcanic rocks in the study area
样品 09HSPGH2 09DHLGH1 09DHLGH2 09DHLGH3 09AESGH1 09AESGH2 08ZSGH01 08ZSGH03 09HBRGH1 09HBRGH2 09HBRGH3 岩性 安山岩 玄武安山岩 玄武安山岩 玄武安山岩 玄武安山岩 安山岩 玄武岩 玄武岩 英安岩 安山岩 玄武安山岩 主量元素(%) SiO2 60.46 55.68 55.50 55.54 56.02 57.91 49.42 51.38 64.06 58.10 52.87 TiO2 1.48 1.14 1.14 1.18 0.90 0.91 1.48 1.35 0.82 0.95 1.12 Al2O3 16.43 16.71 16.82 17.41 19.77 17.71 15.21 14.89 11.34 12.83 15.80 Fe2O3 3.61 4.04 4.80 4.92 3.48 5.05 2.37 1.96 4.73 5.18 5.95 FeO 4.30 4.38 3.86 4.16 3.42 2.37 6.38 6.46 1.78 2.38 3.28 MnO 0.17 0.15 0.16 0.14 0.13 0.14 0.15 0.15 0.06 0.07 0.10 MgO 0.97 4.27 4.45 3.85 2.48 3.01 6.98 6.97 1.91 2.37 4.08 CaO 2.38 8.22 6.74 7.42 5.70 4.75 9.95 8.98 4.90 6.77 4.49 Na2O 6.29 3.15 4.11 3.28 3.42 3.46 3.35 3.26 3.78 4.09 3.40 K2O 0.73 0.70 0.77 0.62 1.85 2.03 0.48 0.40 2.16 1.94 4.62 P2O5 0.60 0.32 0.35 0.32 0.20 0.19 0.22 0.19 0.19 0.23 0.21 LOI 2.59 1.26 1.30 1.13 2.64 2.49 3.30 3.33 4.33 5.11 4.07 H2O- 0.13 0.02 0.04 0.04 0.19 0.22 0.19 0.22 0.10 0.08 0.16 Total 100.14 100.04 100.04 100.01 100.2 100.24 99.48 99.54 100.16 100.1 100.15 Mg# 0.29 0.63 0.67 0.62 0.56 0.69 0.66 0.66 0.64 0.69 0.46 稀土元素(10-6) La 28.60 14.30 13.40 14.20 11.00 11.80 8.24 7.59 9.59 10.80 11.30 Ce 65.00 33.80 32.20 34.00 24.30 25.80 20.94 19.00 20.00 24.10 24.70 Pr 8.78 4.55 4.36 4.62 3.26 3.37 3.14 2.88 2.59 3.14 3.31 Nd 37.3 19.6 18.9 19.4 14.0 14.3 16.6 14.6 11.0 13.2 14.0 Sm 9.03 4.91 4.69 4.76 3.58 3.72 4.67 4.18 2.76 3.34 3.79 Eu 2.59 1.39 1.35 1.44 1.18 1.14 1.40 1.22 0.84 1.02 1.25 Gd 8.56 4.80 4.69 4.86 3.63 3.59 4.90 4.49 3.04 3.56 4.09 Tb 1.28 0.69 0.66 0.74 0.52 0.52 0.84 0.74 0.47 0.56 0.63 Dy 8.10 4.92 4.69 4.86 3.77 3.62 5.10 4.61 3.22 4.00 4.39 Ho 1.75 1.07 1.04 1.06 0.80 0.81 1.07 0.89 0.72 0.90 0.98 Er 4.65 2.91 2.82 2.80 2.25 2.19 3.06 2.65 2.04 2.39 2.61 Tm 0.70 0.43 0.42 0.42 0.33 0.33 0.41 0.38 0.32 0.38 0.38 Yb 4.30 2.69 2.61 2.62 2.12 2.02 2.70 2.25 2.07 2.36 2.34 Lu 0.65 0.39 0.39 0.40 0.30 0.30 0.35 0.34 0.31 0.35 0.35 δEu 0.41 1.62 0.90 0.85 1.21 0.98 0.72 1.28 0.74 0.79 0.33 (La/Yb)N 4.79 3.82 3.69 3.90 3.73 4.20 2.19 3.33 3.29 3.47 3.05 ∑REE 181.0 96.5 92.2 96.2 71.0 73.5 73.4 59.0 70.1 74.1 191.0 LREE/HREE 5.05 4.39 4.32 4.42 4.18 4.49 2.98 3.84 3.83 3.70 3.58 微量元素(10-6) Ti 8 871 6 833 6 833 7 073 5 395 5 455 8 867 8 084 4 915 5 694 6 713 V 30.4 164.0 171.0 180.0 147.0 173.0 307.0 255.0 134.0 162.0 186.0 Rb 23.90 14.90 16.70 9.77 46.90 62.20 9.13 9.86 55.50 46.10 138.00 Sr 278.0 417.0 549.0 418.0 567.0 534.0 236.0 249.0 72.4 210.0 205.0 Ba 235.0 266.0 322.0 300.0 351.0 410.0 58.4 61.8 353.0 307.0 802.0 Zr 240.0 166.0 165.0 171.0 87.5 95.1 131.0 130.0 93.6 105.0 127.0 Hf 5.29 3.76 3.73 3.80 2.30 2.52 3.42 3.52 2.19 2.44 2.97 Nb 9.13 5.08 4.90 5.12 4.37 4.58 4.29 4.35 3.19 3.37 4.05 Ta 0.57 0.32 0.32 0.32 0.33 0.37 0.48 3.15 0.22 0.21 0.28 Y 45.9 28.2 27.2 27.4 21.7 21.5 27.5 24.8 19.8 24.5 26.1 Th 4.89 2.06 2.09 2.02 2.77 3.71 0.58 0.70 1.75 1.83 2.22 U 1.83 1.10 1.26 1.16 1.03 1.36 0.68 0.68 1.46 1.66 0.83 Nb/U 4.99 4.62 3.89 4.41 4.24 3.37 6.27 2.18 2.03 4.88 5.25 主量元素(%) SiO2 50.05 49.43 50.41 49.42 45.41 44.63 44.67 59.05 50.75 56.25 55.44 TiO2 3.03 2.89 2.20 2.14 3.29 3.50 3.43 0.94 1.30 0.97 1.08 Al2O3 14.02 12.99 14.55 13.48 12.74 13.22 13.10 16.09 18.09 15.49 15.45 Fe2O3 7.95 10.52 3.61 3.87 3.23 2.70 2.78 2.81 4.84 2.22 2.63 FeO 5.15 1.94 7.51 6.97 10.06 10.81 11.12 3.62 3.96 4.44 4.57 MnO 0.16 0.22 0.17 0.21 0.24 0.25 0.26 0.21 0.32 0.11 0.12 MgO 2.48 2.27 4.92 5.23 6.40 6.28 6.56 2.92 3.03 4.94 5.02 CaO 4.70 6.31 6.44 5.80 11.25 10.22 10.70 4.89 8.99 5.61 6.12 Na2O 4.69 5.39 3.02 3.83 2.37 2.99 2.39 3.77 3.42 3.74 3.51 K2O 0.57 0.58 0.74 0.44 0.32 0.31 0.29 1.92 0.74 1.55 1.55 P2O5 0.92 0.87 0.47 0.47 0.52 0.60 0.57 0.94 1.30 0.13 0.19 LOI 6.23 6.56 5.93 8.12 3.22 3.68 3.26 0.12 0.17 4.57 4.33 H2O- 0.58 0.84 0.68 0.71 0.17 0.19 0.29 0.19 0.19 0.30 0.34 Total 100.53 100.81 100.65 100.69 99.22 99.38 99.42 97.47 97.1 100.32 100.35 Mg# 0.68 0.54 0.57 0.53 0.51 0.51 0.59 0.58 0.66 0.66 0.57 稀土元素(10-6) La 24.00 22.20 16.20 16.90 31.20 34.70 32.40 18.20 16.60 9.96 11.20 Ce 61.0 56.9 39.9 41.8 63.9 69.5 66.6 41.5 39.6 21.7 24.7 Pr 8.89 8.32 5.77 6.02 8.31 8.95 8.62 5.49 5.56 2.82 3.27 Nd 41.1 38.4 25.9 27.4 38.8 41.6 39.8 22.8 23.6 11.8 14.1 Sm 11.00 10.60 6.94 7.24 8.15 8.55 8.37 5.42 6.00 3.05 3.67 Eu 3.61 3.43 2.27 2.27 2.73 2.87 2.88 1.42 1.75 0.96 1.15 Gd 12.20 11.80 7.62 8.06 7.71 7.99 7.75 5.25 5.85 3.41 4.05 Tb 1.83 1.73 1.12 1.26 1.17 1.26 1.24 0.76 0.85 0.56 0.60 Dy 11.50 11.10 7.33 7.84 6.58 6.46 6.74 4.82 5.24 3.49 3.86 Ho 2.41 2.33 1.49 1.65 1.24 1.21 1.20 1.00 1.10 0.72 0.85 Er 6.46 6.13 3.93 4.40 3.28 3.26 3.47 2.85 3.01 1.93 2.26 Tm 0.92 0.87 0.59 0.64 0.44 0.43 0.44 0.40 0.42 0.29 0.33 Yb 5.66 5.31 3.55 3.96 2.75 2.48 2.62 2.67 2.65 1.91 2.14 Lu 0.85 0.83 0.55 0.60 0.37 0.34 0.33 0.41 0.41 0.29 0.32 δEu 0.98 1.42 0.90 0.87 1.00 1.08 1.64 0.73 1.64 0.75 0.96 (La/Yb)N 3.01 3.28 3.07 8.17 10.10 8.89 4.90 4.51 3.75 3.77 5.98 ∑REE 180.0 123.0 130.0 177.0 190.0 182.0 113.0 113.0 62.9 72.5 84.2 LREE/HREE 3.49 3.70 3.58 6.51 7.09 6.67 5.22 4.77 3.99 4.03 5.46 微量元素(10-6) Ti 18 162 17 323 13 187 12 827 19 747 20 993 20 564 5 634 7 792 5 814 6 474 V 207.0 208.0 264.0 262.0 377.2 408.0 398.0 140.0 197.0 170.0 178.0 Rb 13.10 10.50 15.20 10.20 7.92 8.26 10.60 56.10 16.30 81.30 73.20 Sr 90 172 329 225 476 482 539 478 620 434 400 Ba 426.0 437.0 298.0 213.0 78.2 187.0 141.0 284.0 228.0 300.0 339.0 Zr 317 277 203 206 195 201 208 199 158 110 119 Hf 6.51 6.26 4.71 4.79 5.25 5.64 5.57 4.71 3.74 2.85 2.99 Nb 8.56 8.83 6.97 7.24 34.60 37.70 35.80 5.32 5.02 4.01 4.31 Ta 0.52 0.61 0.44 0.46 2.53 2.56 2.55 0.38 0.30 0.35 0.36 Y 64.8 62.8 39.7 44.1 31.6 32.1 32.2 28.6 29.2 19.4 22.5 Th 3.85 3.54 2.24 2.25 3.03 3.18 2.95 5.94 3.35 4.16 4.23 U 1.63 1.62 0.69 0.74 0.82 0.96 0.88 1.83 1.18 1.12 1.16 Nb/U 5.45 10.10 9.78 42.30 39.30 40.70 2.91 4.25 3.58 3.72 5.73 注:Mg#=Mg2+/(Mg2++Fe2+). 表 2 研究区石炭纪火山岩Nd同位素分析结果
Table 2. Nd isotopic data for Carboniferous volcanic rocks in the study area
样品号 分析号 Sm(10-6) Nd(10-6) 147Sm/144Nd (143Nd/144Nd)i 143Nd/144Nd±2σ εNd(t) 08MHGH8 T1260 8.15 38.8 0.126 987 0.512 320 0.512 565±0.000 013 1.20 08MHGH9 T1261 8.55 41.6 0.124 253 0.512 338 0.512 578±0.000 009 1.56 08MHGH10 T1262 8.37 39.8 0.127 138 0.512 332 0.512 578±0.000 009 1.45 09264GH2 T1264 10.6 38.4 0.166 887 0.512 402 0.512 724±0.000 010 2.80 09AESGH1 T1265 3.58 14.0 0.154 594 0.512 314 0.512 613±0.000 009 1.10 09CSGH8 T1266 3.67 14.1 0.157 361 0.512 447 0.512 751±0.000 007 3.69 09DHLGH2 T1267 4.69 18.9 0.150 029 0.512 583 0.512 873±0.000 007 6.35 09HBRGH2 T1268 3.34 13.2 0.152 976 0.512 450 0.512 745±0.000 008 3.74 09HSPGH2 T1269 9.03 37.3 0.146 363 0.512 488 0.512 771±0.000 009 4.49 注:取t=310 Ma;Sm、Nd含量采用ICP-MS测试结果. -
[1] Condie, K.C., 2005. High Field Strength Element Ratios in Archean Basalts: A Window to Evolving Sources of Mantle Plumes. Lithos, 79(3-4): 491-504. doi: 10.1016/j.lithos.2004.09.014 [2] Dang, B., Zhao, H., Lin, G.C., et al., 2011. Geochemistry and Tectonic Setting of Permian Volcanic Rocks in Yingen-Ejinaqi Banner Basin and Its Neighboring Areas, Inner Mongolia, China. Geological Bulletin of China, 30(6): 923-931 (in Chinese with English abstract). http://www.researchgate.net/publication/291077638_Geochemistry_and_tectonic_setting_of_Permian_volcanic_rocks_in_Yingen-Ejin_Banner_basin_and_its_neighboring_areas_western_Inner_Mongolia [3] Dobrestsov, N.L., Berzin, N.A., Buslov, M.M., 1995. Opening and Tectonic Evolution of the Paleo-Asian Ocean. International Geology Review, 37(4): 335-360. doi: 10.1080/00206819509465407 [4] Ernst, R.E., Buchan, K.L., Campbell, I.H., 2005. Frontiers in Large Igneous Province Research. Lithos, 79(3-4): 271-297. doi: 10.1016/j.lithos.2004.09.004 [5] Fitton, J.G., Saunders, A.D., Norry, M.J., et al., 1997. Thermal and Chemical Structure of the Iceland Plume. Earth and Planetary Science Letters, 153(3-4): 197-208. doi: 10.1016/S0012-821X(97)00170-2 [6] Gu, L.X., Hu, S.X., Yu, C.S., et al., 2000. Carboniferous Volcanites in the Bogda Orogenic Belt of Eastern Tianshan: Their Tectonic Implications. Acta Petrologica Sinica, 16(3): 305-316(in Chinese with English abstract). [7] Hao, J.R., Zhou, D.W., Liu, Y.Q., et al., 2006. Geochemistry and Tectonic Settings of Permian Volcanic Rocks in Santanghu Basin, Xinjiang. Acta Petrologica Sinica, 22(1): 189-198(in Chinese with English abstract). http://www.oalib.com/paper/1472505 [8] Lassiter, J.C., DePaolo, D.J., 1997. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints. In: Mahoney, J.J., Coffin, M.F., eds., Large Igneous Province: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monography Series, American Geophysical Union, Washionton D.C. . [9] Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. doi: 10.1093/petrology/27.3.745 [10] Li, J.Y., Song, B., Wang, K.Z., et al., 2006. Permian-Mafic Ultramafic Complexes on the Southern Margin of the Tu-Ha Basin, East Tianshan Mountains: Geological Records of Vertical Crustal Growth in Central Asia. Acta Geoscientica Sinica, 27(5): 424-446(in Chinese with English abstract). [11] McDonough, W.F., 1990. Constraints on the Composition of the Continental Lithopheric Mantle. Earth and Planetary Science Letters, 101(1): 1-18. doi: 10.1016/0012-821X(90)90119-I [12] Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites With the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4), 207-218. doi: 10.1016/0009-2541(86)90004-5 [13] Pearce, J.A., Norry, M.J., 1979. Petrogenetic Implications of Ti, Zr, Y and Nb Variations in Volcanic Rocks. Contributios to Mineralogy Petrology, 69(1): 33-47. doi: 10.1007/BF00375192 [14] Ren, J.S., Wang, Z.X., Chen, B.W., 1999. The Brief Specification for the Tectonic Map (1∶5 000 000) of China and Adjacent Regions—A Global Look at Tectonics of China. Geology Publishing House, Beijing(in Chinese). [15] Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R.L., ed., The Crust: Treatise on Geochemistry. Elsevier Science, Oxford. [16] Shervais, J.W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1): 101-108. doi: 10.1016/0012-821X(82)90120-0 [17] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalt: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [18] Tanaka, T., Togashi, S., Kamioka, H., et al., 2000. JNdi-1: A Neodymium Isotopic Reference in Consistency with Lajolla Neodymium. Chemical Geology, 168(3-4): 279-281. doi: 10.1016/S0009-2541(00)00198-4 [19] Tatsumi, Y., Eggins, S., 1995. Subduction Zone Magmatism. Black Well Science, Cambridge, Mass., USA. [20] Wang, J.B., XU, X., 2006. Post-Collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China. Acta Geologica Sinica, 80(1): 23-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200601002.htm [21] Wang, T.Y., Gao, J.P., Wang, J.R., et al., 1998. Magmatism of Collisional and Post-Orogenic Period in Northern Alaxa Region in Inner Mongolia. Acta Geologica Sinica, 72(2): 126-137(in Chinese with English abstract). http://www.researchgate.net/publication/291105582_Magmatism_of_collision_and_post-orogenic_period_in_northern_Alaxa_Region_in_Inner_Mongolia [22] Wang, T.Y., Wang. J.R., Wang, S.Z., 1992. Discovery and Tectonic Significance of Engerwusu Ophiolite Melange Belt in Northern Alaxa Region in Inner Mongolia. Journal of Lanzhou University (Nature Science), 18(2): 194-196(in Chinese). [23] Wang, T.Y., Wang, S.Z., Wang, J.R., 1994. The Formation and Evolution of Paleozoic Continental Crust in Alaxa Region. Lanzhou University Press, Lanzhou (in Chinese). [24] Winchester, J.A., Floyd, P.A., 1976. Geochemical Magma Type Discrimination: Application to Altered and Metamorphosed Basic Igneous Rocks. Earth and Planetary Science Letters, 28(3): 459-469. doi: 10.1016/0012-821X(76)90207-7 [25] Wood, D.A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crust Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. doi: 10.1016/0012-821X(80)90116-8 [26] Wu, T.R., He, G.Q., 1992. Ophiolitic Melange Belts in the Northern Margin of the Alashan Block. Geoscience, 6(3): 286-296(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ199203005.htm [27] Xia, L.Q., Li, X.M., Xia, Z.C., et al., 2006. Carboniferous-Permian Rift-Related Volcanism and Mantle Plume in the Tianshan, Northwestern China. Northwestern Geology, 39(1): 1-49(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI200601001.htm [28] Xia, L.Q., Xia, Z.C., Xu, X.Y., et al., 2007. The Discrimination Between Continental Basalt and Island Arc Basalt Based on Geochemical Method. Acta Petrologica et Mineralogica, 26(1): 77-89(in Chinese with English abstract). http://www.researchgate.net/publication/284571545_The_discrimination_between_continental_basalt_and_island_arc_basalt_based_on_geochemical_method [29] Xia, L.Q., Xia, Z.C., Xu, X.Y., et al., 2008. Petrogenesis of Carboniferous-Early Permian Rift-Related Volcanic Rocks in the Tianshan and Its Neighboring Areas, Northwestern China. Northwestern Geology, 41(4): 1-68(in Chinese with English abstract). [30] Xiao, W.J., Han, C.M., Yuan, C., et al., 2006. Unique Carboniferous-Permian Tectonic-Metallogenic Framework of Northern Xinjiang(NW China): Constraints for the Tectonics of the Southern Paleoasian Domain. Acta Petrologica Sinica, 22(5): 1062-1076(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026539172 [31] Xing, X.J., Zhou, D.W., Liu, Y.Q., et al., 2004. Geochemistry of Early Permian Volcanic Rocks and Their Tectonic Settings from the Turpan-Hami Basin, XinJiang. Xinjiang Geology, 22(1): 50-55(in Chinese with English abstract). http://www.researchgate.net/publication/284487694_Geochemistry_of_early_Permian_volcanic_rocks_and_their_tectonic_settings_from_the_Turpan-Hami_basin [32] Xu, Y.G., Chung, S.L., Jahn, B., et al., 2001. Petrologic and Geochemical Constrains on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 58(3-4): 145-168. doi: 10.1016/S0024-4937(01)00055-X [33] Zhang, X.H., Huang, X., Chen, J.P., et al., 2012. Stratigraphical Sequence of Carboniferous Marine Volcanic-Deposit Rock and Its Geological Age in Jueluotage Area, Eastern Tianshan. Earth Science—Journal of China University of Geosciences, 37(6): 1305-1314(in Chinese with English abstract). http://www.researchgate.net/publication/287178856_Stratigraphical_sequence_of_carboniferous_marine_volcanic-deposit_rock_and_its_geological_age_in_Jueluotage_area_eastern_Tianshan [34] Zhao, X.M., Chen, D.C., Deng, J., 2010. Depositional Characteristic of Permo-Carboniferous System from Yingen-Ejinaqi and Their Surrounding Areas, Inner Mongolia, China and It Implications for Petroleum. Acta Geologica Sinica, 84(8): 1183-1194(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201008012.htm [35] Zhao, X.M., Chen, D.C., Deng, J., et al., 2011. Depositional Characteristics and Their Geological Implications of the Permo-Carboniferous Carbonate Rocks from Yingen-Ejinaqi and Their Surrounding Areas, Inner Mongolia, China. Earth Science—Journal of China University of Geosciences, 36(1): 62-72(in Chinese with English abstract). [36] Zhao, Z.H., Guo, Z.J., Han, B.F., et al., 2006. The Geochemical Characteristics and Tectonic-Magmatic Implications of the Latest-Paleozoic Volcanic Rocks from Santanghu Basin, Eastern Xinjiang, Northwest China. Acta Petrologica Sinica, 22(1): 199-214(in Chinese with English abstract). http://www.researchgate.net/publication/286792823_The_geochemical_characteristics_and_tectonic-magmatic_implications_of_the_latest-Paleozoic_volcanic_rocks_from_Santanghu_basin_eastern_Xinjiang_northwest_China [37] Zhao, Z.H., Guo, Z.J., Zhang, Z.C., et al., 2004. The Geochemical Characteristics and Tectonic Setting of The Lower Permian Basalts in Hongliuhe Area at the Border between Xinjiang and Gansu Provinces. Geological Journal of China Universities, 10(4): 545-553(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200404007.htm [38] Zhou, D.W., Liu, Y.Q., Xing, X.J., et al., 2006. Formation of the Permian Basalts and Implications of Geochemical Tracing for Paleo-Tectonic Setting and Regional Tectonic Background in the Turpan-Hami and Santanghu Basins, Xinjiang. Science in China (Series D), 49 (6) 584-596. doi: 10.1007/s11430-006-0584-1 [39] Zhou, L.F., Zhao, Z.Y., Guo, Z.M., 1995. Formation and Evolution of the Sedimentary Basins in Alaxa and Adjacent Regions. Northwest University Press, Xi'an, 57-92 (in Chinese). [40] 党犇, 赵虹, 林广春, 等, 2011. 内蒙古西部银根-额济纳旗盆地及邻区二叠纪火山岩的地球化学特征和构造环境. 地质通报, 30(6): 923-931. doi: 10.3969/j.issn.1671-2552.2011.06.014 [41] 顾连兴, 胡受奚, 于春水, 等, 2000. 东天山博格达造山带石炭纪火山岩及其形成地质环境. 岩石学报, 16(3): 305-316. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200003000.htm [42] 郝建荣, 周鼎武, 柳益群, 等, 2006. 新疆三塘湖盆地二叠纪火山岩岩石地球化学及其构造环境分析. 岩石学报, 22(1): 189-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601019.htm [43] 李锦轶, 宋彪, 王克卓, 等, 2006. 东天山吐哈盆地南缘二叠纪幔源岩浆杂岩: 中亚地区陆壳垂向生长的地质记录. 地球学报, 27(5): 424-446. doi: 10.3321/j.issn:1006-3021.2006.05.006 [44] 任纪舜, 王作勋, 陈炳蔚, 1999.1∶500万中国及邻区大地构造图及简要说明——从全球看中国大地构造. 北京: 地质出版社. [45] 王京彬, 徐新, 2006. 新疆北部后碰撞构造演化与成矿. 地质学报, 80(1): 23-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601002.htm [46] 王廷印, 高军平, 王金荣, 等, 1998. 内蒙古阿拉善北部地区碰撞期和后造山期岩浆作用. 地质学报, 72(2): 126-137. doi: 10.3321/j.issn:0001-5717.1998.02.004 [47] 王廷印, 王金荣, 王士政, 1992. 阿拉善北部恩格尔乌苏蛇绿混杂岩带的发现及其构造意义. 兰州大学学报(自然科学版), 18(2): 194-196. doi: 10.3321/j.issn:0455-2059.1992.02.037 [48] 王廷印, 王士政, 王金荣, 1994. 阿拉善古生代陆壳的形成和演化. 兰州: 兰州大学出版社. [49] 吴泰然, 何国琦, 1992. 阿拉善地块北缘的蛇绿混杂岩带及其大地构造意义. 现代地质, 6(3): 286-296. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ199203005.htm [50] 夏林圻, 李向民, 夏祖春, 等, 2006. 天山石炭-二叠纪大火成岩省裂谷火山作用与地幔柱. 西北地质, 39(1): 1-49. doi: 10.3969/j.issn.1009-6248.2006.01.001 [51] 夏林圻, 夏祖春, 徐学义, 等, 2007. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩. 岩石矿物学杂志, 26(1): 77-89. doi: 10.3969/j.issn.1000-6524.2007.01.011 [52] 夏林圻, 夏祖春, 徐学义, 等, 2008. 天山及邻区石炭纪-早二叠世裂谷火山岩岩石成因. 西北地质, 41(4): 1-68. doi: 10.3969/j.issn.1009-6248.2008.04.001 [53] 肖文交, 韩春明, 袁超, 等, 2006. 新疆北部石炭纪-二叠纪独特的构造-成矿作用: 对古亚洲洋构造域南部大地构造演化的制约. 岩石学报, 22(5): 1062-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605002.htm [54] 邢秀娟, 周鼎武, 柳益群, 等, 2004. 吐-哈盆地及周缘早二叠世火山岩地球化学特征及大地构造环境探讨. 新疆地质, 22(1): 50-55. doi: 10.3969/j.issn.1000-8845.2004.01.009 [55] 张旗, 钱青, 王焰, 1999. 造山带火成岩地球化学研究. 地学前缘, 6(3): 113-120. doi: 10.3321/j.issn:1005-2321.1999.03.011 [56] 张雄华, 黄兴, 陈继平, 等, 2012. 东天山觉罗塔格地区石炭纪火山-沉积岩地层序列及地质时代. 地球科学——中国地质大学学报, 37(6): 1305-1314. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201206027.htm [57] 赵省民, 陈登超, 邓坚, 2010. 银根-额济纳旗及邻区石炭系-二叠系的沉积特征及石油地质意义. 地质学报, 84(8): 1183-1194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008012.htm [58] 赵省民, 陈登超, 邓坚, 等, 2011. 银根-额济纳旗及邻区石炭-二叠纪碳酸盐岩的沉积特征及其地质意义. 地球科学——中国地质大学学报, 36(1): 62-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201101008.htm [59] 赵泽辉, 郭召杰, 韩宝福, 等, 2006. 新疆三塘湖盆地古生代晚期火山岩地球化学特征及其构造-岩浆演化意义. 岩石学报, 22(1): 199-214. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601020.htm [60] 赵泽辉, 郭召杰, 张志诚, 等, 2004. 新甘交界红柳河地区下二叠统玄武岩地球化学特征及其形成的构造背景. 高校地质学报, 10(4): 545-553. doi: 10.3969/j.issn.1006-7493.2004.04.008 [61] 周立发, 赵重远, 郭忠铭, 1995. 阿拉善及邻区沉积盆地的形成与演化. 西安: 西北大学出版社, 57-92.