Zircon U-Pb Chronology, Geochemistry of Jiangjunmu Ore-Bearing Pluton, Eastern Part of East Kunlun and Their Geological Significance
-
摘要: 将军墓含矿花岗闪长斑岩位于东昆仑造山带东段.通过岩石地球化学、锆石U-Pb年代学、Lu-Hf同位素研究,结果表明,含矿花岗闪长斑岩LA-ICP-MS锆石U-Pb年龄为218.8±1.3 Ma,形成于晚三叠世.含矿花岗闪长斑岩SiO2含量为65.23%~67.25%,MgO含量1.50%~1.59%,Al2O3含量15.30%~15.75%,K2O/Na2O比值1.00~1.20,Mg#值43~44.表现富硅、富铝、富钾特征,显示高钾钙碱性系列;岩石具有轻重稀土分馏和轻稀土富集及负Eu异常特征,富集大离子亲石元素(LILE),如Th、U、Rb、K;亏损高场强元素(HFSE),如Nb、P、Zr等;锆石εHf(t)=-1.7~+1.01,TDM2=1 064~1 214 Ma,反映源区主体为中元古代下地壳.综合年代学、岩石学和地球化学证据,显示将军墓含矿花岗闪长斑岩源于中元古代下地壳重熔,并有少量地幔岩浆加入而发生不完全混合,含少量暗色微粒包体的含矿岩石.将军墓含矿花岗闪长斑岩形成于东昆仑晚三叠世碰撞后伸展环境,是东昆仑晚三叠世壳幔相互作用成岩-成矿的体现.该岩体不仅仅是东昆仑古特提斯构造岩浆事件的产物,同时具备良好的成矿条件,为东昆仑晚三叠世岩浆作用研究和寻找与之有关的斑岩型或热液型多金属矿床提供重要的证据.
-
关键词:
- 东昆仑东段 /
- 将军墓含矿花岗闪长斑岩 /
- 锆石U-Pb年龄 /
- 暗色微粒包体 /
- 岩石学
Abstract: Jiangjunmu ore-bearing granodiorite porphyry is located in the eastern part of East Kunlun orogenic belt. In this paper,zircon U-Pb dating and Lu-Hf isotopes,whole-rock major and trace elements of ore-bearing granodiorite porphyry are presented to discuss their geochronology and genesis. The results show that the ore-bearing granodiorite porphyry was formed at the Late Triassic with the age of 218.8±1.3 Ma. It has contents of SiO2(65.23%-67.25%),MgO(1.50%-1.59%),Al2O3(15.30%-15.75%) with K2O/Na2O ratios ranging from 1.00 to 1.20 and Mg# values ranging from 43 to 44. The ore-bearing granodiorite porphyries are characterized by high silicon,aluminum and high-potassium,belonging to the high-potassium rock. Meanwhile,they are enriched in large ion lithophile elements (LILEs) such as Th,U,Rb and K,and depleted in high field strength elements (HFSE) such as Nb,P and Zr. Hf isotopic compositions of the ore-bearing granodiorite porphyry (εHf(t)=-1.7-+1.01,TDM2=1 064-1 214 Ma),indicating that their parental magmas were derived from the Middle Proterozoic lower crust. Coupled with the petrography of a small number of mafic microgranular enclaves,geochronology,petrology and geochemistry data indicate that ore-bearing granodiorite porphyry originated from the mixing of dominating re-melting of Middle Proterozoic lower crust and a small amount of mantle-derived materials. The ore-bearing granodiorite porphyry was formed in the post-collisional orogenic extensional setting,indicative of the crust-mantle diagenesis and mineralization at Late Triassic in the East Kunlun. It is not only the product of the Paleo-Tethys tectonic and magmatic event in the East Kunlun,but also has good metallogenic conditions,which provides important evidence for the study of the Late Triassic magmatism in the East Kunlun and search for porphyry or hydrothermal polymetallic deposits. -
0. 引言
壳幔相互作用是花岗岩类形成的主要机制(罗照华等,2002;王德滋和谢磊,2008;张明东等,2018),其形成的岩石及其所携带的深源岩石包体蕴含着丰富的壳幔相互作用信息,对揭示深部岩浆作用过程,了解花岗岩起源、演化及成岩-成矿机制具有重要的意义(刘成东等,2004).东昆仑地区岩浆发育,尤其在早中泥盆世和早-晚三叠世的幔源岩浆底侵作用和壳幔混合作用明显(陈国超等,2013;高永宝等,2015).前人对其岩石学、地球化学等特征开展了详细研究,普遍认为幔源岩浆底侵是引起下地壳物质部分熔融和形成混合成因花岗岩的重要机制(谌宏伟等,2005;熊富浩,2014;高永宝等,2015;Xia et al., 2017;陈国超等,2017;秦拯纬等,2018).很多学者对幔源岩浆底侵以及壳幔混合作用相关的岩浆活动以及与岩浆活动相关的金属矿床研究主要集中在晚三叠世之前(罗照华等,2002;刘成东等,2004;丰成友等,2012;高永宝,2013).尽管在晚三叠世花岗岩中有大量的幔源物质,并且前人对壳幔混合形成的花岗岩做了大量的研究工作(丰成友等,2012;张炜等,2016;陈国超等,2017; Xia et al., 2017).但相对于早中泥盆世和早-中三叠世,晚三叠世花岗岩中暗色微粒包体含量明显少于晚二叠世-早中三叠世(罗明非等,2014;张明东等,2018),总体研究相对于早中泥盆世和早-中三叠世具有一定差距,从而在一定程度上制约了晚三叠世壳幔岩浆作用相关的成岩-成矿作用研究.近年来,在东昆仑相继发现了埃坑德勒斯特钼(铜)矿、下得波利铜钼矿、乌兰乌珠尔铜矿、鸭子沟铜钼矿、加当根铜钼矿、热水斑岩型钼矿床等多处斑岩型矿床(点),受到地质学家的重视,并在矿床成岩成矿时代、岩石地球化学、成因等方面的研究取得了显著的成就(丰成友等,2010;许庆林等,2014).矿床(点)的含矿岩体形成年代主要集中在早-中三叠世(235~248 Ma),少量集中在晚三叠世(204~219 Ma)(丰成友等,2012;张炜等,2016).锆石εHf(t)主要集中在-5~-1之间,反映源区主要来源于地壳物质部分熔融(张炜等,2016).将军墓含矿花岗闪长斑岩体是在东昆仑东段最新发现的晚三叠世含Cu(Au)岩体(图 1),并且岩体中发现了少量的暗色微粒包体.目前对于岩体的研究处于初级阶段.本文在结合区域研究资料的基础上,通过对含矿岩体岩相学、锆石U-Pb年代学、全岩主微量元素及锆石Hf同位素展开研究.探讨含矿岩体的源区特征以及构造背景,以期为东昆仑晚三叠世花岗岩类研究和找矿工作提供依据.
图 1 中国大地构造格架示意图(a);东昆仑造山带示意图(b);东昆仑三叠纪矿花岗岩类年龄统计直方图(c);东昆仑地区岩浆岩分布简图(d)图a底图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2019)1675号的标准地图制作,底图无修改;,图b,d底图引自Hu et al.(2016);图c数据张炜等(2016)、丰成友等(2012)、张明东等(2018)Fig. 1. Outline of the geological framework of China(a); schematic geological map of the East Kunlun orogenic belt (EKB) (b); age histogram of granitoids at the Triassic in the East Kunlun(c); Simplified distribution map of magmatic rocks along the East Kunlu(d)1. 地质背景
东昆仑造山带位于青藏高原北部,是中国中央造山系的重要组成部分.北部与柴达木陆块相接,南部与巴颜喀拉地块拼接,西至阿尔金断裂,东至瓦洪山断裂并以西秦岭为界.以昆中缝合带为界,将东昆仑划分为昆北地体和昆南地体(图 1b)(许志琴等,1996).东昆北地体(昆北地体)位于柴达木南缘与东昆中蛇绿岩带(昆中断裂带)之间, 呈EW向延伸展布.出露地层主要有中元古界长城系金水口群斜长角闪岩、云母斜长片麻岩等,蓟县系冰沟群板岩、变砂岩、结晶灰岩、大理岩及白云岩等;下古生界奥陶-志留系滩间山群火山碎屑岩组;上古生界泥盆系牦牛山组砾岩、含砾复矿砂岩、长石石英砂岩和夹凝灰质粉砂岩,石炭系下统石拐子组碳酸盐岩和大干沟组砾岩、紫色含砾砂岩、灰绿色石英砂岩、粉砂岩及石炭系上统缔敖苏组紫红色烁岩、石英砂岩和粉砂岩;中生界上三叠统鄂拉山组陆相火山岩.岩浆岩以早古生代和三叠纪花岗质岩浆岩大量发育为特征(熊富浩,2014).研究区位于东昆仑北地体(图 1).主要地层有奥陶系滩间山群安山质火山碎屑岩、石炭系缔敖苏组碳酸盐岩、晚三叠系鄂拉山组火山岩及上新统砂岩.断裂构造主要有北西-南东和北东-南西向两组.区内岩浆岩发育,主要有晚三叠世黑云母花岗岩和花岗闪长岩、晚二叠世花岗闪长岩、早石炭世闪长岩和花岗闪长岩.含矿岩体主要与晚三叠纪花岗闪长斑岩有关.岩体侵位于鄂拉山组火山岩和花岗闪长岩接触带,受北东-南西向断裂构造控制,地表出露面积小,呈条带状,长约800 m,宽5~8 m.总体受北西-南东向构造控制,后期被北东-南西向构造交切(图 2).
2. 岩相学特征
含矿花岗闪长斑岩呈灰白色,斑状结构,块状构造.斑晶呈自形-半自形结构,粒径为0.2~1.0 mm.主要有斜长石(8%)、黑云母(3%)、角闪石(2%).斑晶斜长石呈自形-半自形板状,粒径约0.2~1.0 mm,遭受轻微的绢云母化蚀变(图 3a).角闪石呈他形粒状, 粒径约0.1~0.3 mm,被熔蚀成浑圆状,局部包含少量的石英.黑云母呈自形-半自形粒状,粒径0.3~1.0 mm;基质主要呈他形粒状结构,粒径 < 0.1 mm,主要有斜长石(45%)、钾长石(24%)、石英(16%).长石多蚀变为绢云母、绿泥石.石英呈他形不规则状,充填在斜长石、钾长石、黑云母等矿物粒间;副矿物为锆石、磷灰石、榍石等(2%).另外,在岩石中含有大量的矿石矿物,主要有黄铁矿、黄铜矿、少量白铁矿、方铅矿、磁黄铁矿及金红石等,呈浸染状、网脉状分布(图 3d,3e,3f).
在含矿花岗闪长斑岩中含有大量的椭圆状暗色微粒包体,长约2~3 cm,宽约4~6 cm(图 3b).岩石呈灰绿色,具有典型的岩浆矿物组合和岩浆结构,块状构造.主要矿物有角闪石(50%)、斜长石(20%)、石英(20%)、钾长石和黑云母(7%).另外,含少量的针状磷灰石、锆石等副矿物(~3%).其中,角闪石和黑云母呈他形粒状.角闪石遭受强烈绿泥石化蚀变.斜长石和石英呈他形粒状,斜长石遭受较强的绿泥蚀变.石英遭受强烈的溶蚀,呈浑圆状,少量被角闪石包含(图 3c).
3. 分析方法
本次研究样品分别从寄主花岗闪长斑岩和暗色微粒包体中采集, 采样地理坐标(98°16′50″E,36°10′24″N).样品在岩体不同的位置分别采取,其中3件采自暗色微粒包体,9件采自花岗闪长斑岩,并在花岗闪长斑岩中采集年代学样品1件.
3.1 锆石LA-ICP-MS U-Pb测年
锆石U-Pb同位素定年和锆石阴极发光图像拍摄是在武汉上谱分析科技有限责任公司完成,测年仪器为LA-ICP-MS,详细的仪器参数和分析流程见Zong et al. (2017).工作电场电压为10.0~13.0 kV,钨灯丝电流为80~85 μA.GeolasPro激光剥蚀系统由COMPexPro 102 ArF 193 nm准分子激光器和MicroLas光学系统组成,ICP-MS型号为Agilent 7700e.激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合,激光剥蚀系统配置有信号平滑装置.本次分析的激光束斑和频率分别32 μm和5 Hz.U-Pb同位素定年和微量元素含量处理中采用锆石标准91500和玻璃标准物质NIST610作外标分别进行同位素和微量元素分馏校正.每个时间分辨分析数据包括大约20~30 s空白信号和50 s样品信号.对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Pb同位素比值和年龄计算)采用软件ICPMSDataCal完成.锆石样品的U-Pb年龄谐和图绘制和年龄加权平均计算采用Isoplot/Ex-ver3 (Ludwig,2003)完成.
3.2 全岩主微量元素分析
全岩主微量元素分析在武汉上谱分析科技有限责任公司完成.主量分析利用日本理学PrimusⅡ X射线荧光光谱仪(XRF)分析完成.具体方法:(1)将200目样品置于105℃烘箱中烘干12 h;(2)称取~1.0 g烘干样品置于恒重陶瓷坩埚中,在1 000℃马弗炉中灼烧2 h,取出待冷却至室温再称量,计算烧失量;(3)分别称取6.0 g助熔剂(Li2B4O7:LiBO2:LiF=9:2:1)、0.6 g样品、0.3 g氧化剂(NH4NO3)置于铂金坩埚中,在1 150℃熔样炉中熔融14 min,取出坩埚转移到耐火砖上冷却,然后将玻璃片取出以备XRF测试.微量利用Agilent 7700e ICP-MS分析完成.具体方法:(1)将200目样品置于105℃烘箱中烘干12 h;(2)准确称取粉末样品50 mg置于Teflon溶样弹中;(3)先后依次缓慢加入1 mL高纯HNO3和1 mL高纯HF;(4)将Teflon溶样弹放入钢套,拧紧后置于190℃烘箱中加热24 h以上;(5)待溶样弹冷却,开盖后置于140℃电热板上蒸干,然后加入1 mL HNO3并再次蒸干;(6)加入1 mL高纯HNO3、1 mL MQ水和1 mL内标In(浓度为1 ppm),再次将Teflon溶样弹放入钢套,拧紧后置于190℃烘箱中加热12 h以上;(7)将溶液转入聚乙烯料瓶中,并用2% HNO3稀释至100 g以备ICP-MS测试.
3.3 锆石Lu-Hf同位素
原位微区锆石Hf同位素比值测试在中国地质大学(武汉)地质过程与矿产资源国家重点实验室,采用激光剥蚀多接收杯等离子体质谱(LA-MC-ICP-MS)完成.分析是在锆石测年的基础上,选取较大锆石在原测年点或相邻位置测定,激光束斑直径为40 μm.实验过程中,使用176Yb/173Yb=0.796 39扣除176Yb对176Hf的同量异位干扰.使用176Lu/175Lu=0.026 56来扣除干扰程度相对较小的176Lu对176Hf的同量异位干扰,具体方法详见Hu et al.(2015).
4. 结果
4.1 锆石年代学
将军墓花岗闪长斑岩锆石U-Pb年代学分析结果见附表 1.锆石无色透明,晶型完整,以长柱状为主,长80~120μm,宽40~80μm,长宽比约为2:1.CL图像显示(图 4),锆石均发育较好的振荡环带.稀土变化曲线具有明显的Ce异常和Eu负异常.锆石Th/U比值为0.34~0.99,平均0.61,均为岩浆成因锆石(吴元保和郑永飞,2004).样品(Jjm01)共测定了18个点,测点206Pb /238U年龄数据均分布集中,变化在215~221 Ma之间,投影点均落在谐和线上.206Pb /238U加权平均年龄为218.8±1.3 Ma(n =18,MSWD=0.24) (图 4).锆石抗后期地质热事件干扰能力强,岩浆锆石U-Pb年龄可反映岩浆侵位结晶年龄,该年龄反映了岩体的结晶年龄.
表 1 将军墓花岗闪长斑岩和暗色微粒包体主微量元素地球化学分析数据Table Supplementary Table Whole rock major and trace element contents of Jiangjunmu granodiorite porphyry and MME样品编号 Jjm-01 Jjm-02 Jjm-03 Jjm01-1 Jjm01-2 Jjm01-3 Jjm01-4 Jjm01-5 Jjm01-6 Jjm01-7 Jjm01-8 Jjm01-9 岩石类型 暗色微粒包体(MME) 花岗闪长斑岩 SiO2 57.19 57.29 54.98 65.50 65.84 65.58 65.82 65.23 65.25 66.31 66.54 67.25 TiO2 0.76 0.77 1.20 0.67 0.65 0.68 0.66 0.68 0.69 0.63 0.60 0.63 Al2O3 17.33 17.75 17.51 15.35 15.31 15.47 15.42 15.3 15.45 15.44 15.47 15.75 TFeO 6.82 7.36 8.39 4.07 4.04 4.07 4.06 4.13 4.14 3.93 3.82 3.95 MnO 0.13 0.14 0.17 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.07 MgO 2.93 3.09 3.42 1.59 1.56 1.58 1.56 1.58 1.55 1.54 1.50 1.55 CaO 2.77 2.09 2.99 2.29 2.54 2.31 2.37 2.26 2.31 2.36 2.29 2.32 Na2O 4.63 4.72 5.43 3.69 3.40 3.58 3.60 3.67 3.72 4.03 4.07 4.04 K2O 4.58 4.47 4.27 4.17 4.06 4.10 4.12 4.19 4.22 4.04 4.10 4.12 P2O5 0.16 0.16 0.23 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.14 0.15 LOI 3.31 2.74 2.10 2.46 2.43 2.30 2.24 2.47 2.39 2.14 2.11 2.45 SUM 100.61 100.58 100.69 99.99 100.04 99.88 100.06 99.73 99.94 100.64 100.70 102.28 Mg# 46 46 45 44 44 44 43 43 43 44 44 44 Li 69.17 77.09 86.69 56.40 60.80 58.94 60.31 51.84 53.51 53.49 51.48 52.67 Be 2.15 2.33 2.51 2.24 2.63 2.39 2.53 2.21 2.3 2.35 2.22 2.32 Sc 22.11 22.79 17.59 6.98 7.93 7.65 7.70 7.72 7.61 7.70 7.55 8.45 V 94.39 97.65 74.04 39.33 39.03 41.15 41.37 40.86 40.60 41.66 39.20 40.84 Cr 58.98 63.65 23.61 7.15 8.24 7.34 7.59 8.87 7.95 11.56 8.90 8.76 Co 30.45 23.30 24.32 32.38 23.80 26.73 23.22 32.31 29.01 24.57 25.43 26.24 Ni 3.75 3.83 3.65 2.53 2.34 2.47 2.39 2.78 2.62 2.16 2.38 2.42 Cu 25.21 35.72 6.31 11.07 12.79 6.42 6.48 3.91 5.41 5.17 6.52 5.50 Zn 319.50 429.55 197.43 82.53 72.50 72.52 73.99 73.39 74.76 72.15 68.70 73.99 Ga 24.92 26.71 28.60 20.06 20.67 21.48 21.77 20.6 20.69 20.20 19.79 19.80 Rb 173.22 172.37 51.64 204.71 202.81 204.94 210.74 190.16 200.27 183.69 182.36 183.20 Sr 354.6 341 567.98 482.62 463.59 482.34 483.65 457.85 500.44 319.02 326.65 331.47 Y 45.95 50.08 16.43 19.93 21.93 20.82 20.07 20.39 21.20 19.47 18.93 19.16 Zr 141.91 142.99 240.02 207.83 215.00 207.26 224.70 194.62 217.88 196.44 195.99 208.52 Nb 15.24 15.39 18.97 14.77 14.78 15.30 15.51 14.98 15.02 13.90 13.56 13.91 Sn 2.17 2.22 1.25 2.69 1.86 2.31 2.70 2.19 2.34 2.18 2.23 2.22 Cs 6.05 6.49 13.11 7.78 12.77 10.49 9.89 7.04 7.70 4.26 4.31 4.40 Ba 676.39 632.45 233.36 773.58 728.22 741.27 765.04 819.96 785.65 607.64 640.9 624.33 Lu 0.53 0.58 0.23 0.21 0.23 0.21 0.21 0.21 0.21 0.23 0.24 0.25 Hf 4.87 4.73 6.46 5.74 5.89 5.68 6.09 5.34 5.91 5.87 6.08 6.48 Ta 1.32 1.27 1.48 1.07 1.05 1.08 1.09 1.07 1.04 1.23 1.32 1.29 Tl 0.90 0.88 0.26 1.08 1.06 1.04 1.15 1.11 1.12 0.82 0.90 0.91 Pb 33.84 43.6 18.75 24.90 24.35 25.67 25.37 23.9 23.99 18.59 20.04 19.89 Th 15.26 14.21 8.23 25.83 27.30 28.69 28.99 26.03 26.51 25.05 27.12 24.88 U 2.64 2.48 2.33 3.19 3.44 3.40 3.50 3.37 3.35 2.76 2.92 2.84 La 42.37 41.99 32.14 54.50 54.60 62.70 59.50 54.50 56.70 51.70 53.57 48.58 Ce 108.18 110.14 65.43 105.00 104.00 119.00 113.00 104.00 108.00 107.24 109.82 98.97 Pr 15.38 16.13 8.07 11.60 11.90 13.20 12.50 11.80 12.10 11.97 12.21 11.18 Nd 68.94 71.47 31.88 42.30 43.30 46.8 44.70 43.00 43.80 44.01 44.98 42.30 Sm 16.32 17.16 6.29 7.90 8.08 8.61 8.22 8.00 8.07 8.30 8.35 7.95 Eu 1.86 1.90 1.15 1.21 1.16 1.20 1.20 1.25 1.19 1.18 1.25 1.25 Gd 13.25 13.51 4.85 5.62 5.85 6.05 5.87 5.84 5.72 5.96 5.75 5.68 Tb 1.88 1.97 0.67 0.76 0.83 0.82 0.77 0.77 0.77 0.79 0.80 0.79 Dy 10.77 11.05 3.55 4.11 4.33 4.17 3.97 4.18 4.19 4.20 4.32 4.24 Ho 1.86 1.95 0.63 0.68 0.74 0.72 0.66 0.68 0.70 0.71 0.73 0.74 Er 4.92 5.05 1.72 1.87 2.07 1.91 1.88 1.93 2.02 1.90 1.90 1.89 Tm 0.64 0.68 0.24 0.24 0.25 0.25 0.23 0.23 0.23 0.26 0.26 0.26 Yb 3.90 4.17 1.54 1.54 1.61 1.52 1.56 1.63 1.60 1.65 1.71 1.71 ΣREE 290.79 297.76 158.39 237.54 238.95 267.16 254.27 238.02 245.3 240.11 245.90 225.77 LREE 253.05 258.79 144.97 222.51 223.04 251.51 239.12 222.55 229.86 224.40 230.19 210.22 HREE 37.75 38.97 13.42 15.03 15.91 15.65 15.15 15.47 15.44 15.71 15.71 15.55 LREE/HREE 6.70 6.64 10.80 14.80 14.02 16.07 15.78 14.39 14.89 14.29 14.65 13.52 (La/Yb)N 7.80 7.22 14.96 25.38 24.33 29.59 27.36 23.98 25.42 22.48 22.51 20.42 δEu 0.38 0.37 0.61 0.53 0.49 0.48 0.50 0.53 0.51 0.49 0.52 0.54 δCe 1.04 1.04 0.97 0.97 0.96 0.96 0.97 0.96 0.96 1.02 1.01 1.00 注:主量元素单位为%;微量和稀土元素单位为10-6;Mg#=Mg2+/(Mg2++Fe2+);(La/Yb)N标准化数据引自Sun and McDonough (1989). 4.2 主量元素
花岗闪长斑岩全岩主微量分析结果见表 1.大多数样品的烧失量均高于2%,说明岩体遭受一定的蚀变.花岗闪长斑岩SiO2含量为65.23%~67.25%,MgO含量1.50%~1.59%,Na2O含量3.40%~4.07%,K2O含量4.04%~4.22%,K2O/Na2O比值1.00~1.20,Al2O3含量15.3%~15.75%,TFeO含量3.82%~4.14%,Mg#值43~44.在SiO2-K2O+Na2O图解中(图 5a),样品大部分落入花岗闪长岩区域.总体表现富SiO2、Al2O3、K2O,贫MgO、Na2O特征.在SiO2-K2O图解中(图 5b),显示高钾钙碱性系列.A/CNK比值1.01~1.06,平均1.03,显示准铝质岩石特征(图 5c).
暗色微粒包体SiO2含量54.98%~57.29%,MgO含量2.93%~3.42%,Na2O含量4.63%~5.43%,K2O含量4.27%~4.58%,K2O/Na2O比值0.79~0.99,Al2O3含量17.33%~17.75%,TFeO含量6.82%~8.39%,Mg#为45~46.相对于花岗闪长斑岩,总体表现贫SiO2,富Na2O、MgO、TFeO特征.
4.3 微量和稀土元素
花岗闪长斑岩稀土总量(∑REE)含量225.77×10-6~267.16×10-6.LREE含量210.22×10-6~251.51×10-6,HREE含量15.03×10-6~15.71×10-6,LREE/HREE比值13.52~16.07.(La/Yb)N比值20.42~29.59,Eu/Eu*值为0.48~0.53,显示负Eu异常特征,说明在岩石形成过程中发生斜长石分离结晶.岩石具有较高的LREE/HREE和(La/Yb)N比值,显示轻重稀土发生强烈的分馏和轻稀土富集特征.
暗色微粒包体稀土总量(∑REE)为158.39×10-6~297.76×10-6.LREE含量144.97×10-6~258.79×10-6,HREE含量13.42×10-6~38.97×10-6,LREE/HREE比值6.64~10.8.(La/Yb)N比值7.22~14.96,Eu/Eu*为0.37~0.61.相对于寄主岩石,暗色微粒包体显示较轻的轻重稀土分馏和轻稀土富集及负Eu异常特征,且具有较高的稀土总量及较强烈的稀土曲线变化特征,可能是在形成过程中围岩混入比例不同导致.在原始地幔标准蛛网图解中,二者均显示大离子亲石元素富集(LILE)(如Th、U、Rb、K),高场强元素亏损特征(HFSE)(如Nb、P、Zr等)(图 6).
图 6 将军墓花岗闪长斑岩及暗色微粒包体稀土球粒陨石标准化配分曲线和原始地幔标准化蛛网图解球粒陨石和原始地幔数据引自Sun and McDonough(1989)Fig. 6. Chondrite-normalized rare earth elements pattern and primitive mantle-normalized elements spider diagram of Jiangjunmu granodiorite porphyry and MME4.4 锆石Hf同位素
Hf同位素分析结果见附表 2.寄主岩石176Lu/177Hf变化范围为0.000 467~0.001 115,均小于0.002,说明锆石在形成后没有放射性Hf的积累.因此,所测值代表了锆石结晶时的Hf同位素组成.锆石εHf(t)变化值为-1.7~+1.0,分布比较集中.fLu/Hf变化值为-0.97~-0.99,小于镁铁质地壳(fLu/Hf=-0.34)和硅铝质地壳(fLu/Hf=-0.72),故二阶段模式年龄能很好地反映源区物质从亏损地幔被抽取的时间(吴福元等,2007).两阶段Hf模式年龄TDM2为1 064~1 214 Ma, 平均1 152 Ma.
5. 讨论
5.1 岩浆混合
在东昆仑地区岩浆作用过程中,壳幔相互作用是壳幔混源花岗岩类形成的重要机制(罗照华等,2002;王德滋等,2008;张明东等,2018).岩浆混合过程中保留的暗色微粒包体对岩浆作用过程以及花岗岩的起源、演化、形成机制等具有重要的研究意义(刘成东等,2004), 主要成因机制有:(1)岩浆就位过程中捕虏的基性块体(Donaire et al., 2005);(2)与长英质寄主岩浆发生混合不完全而残留的镁铁质岩浆固结形成(Liu et al., 2013;杨堂礼和蒋少涌,2015);(3)源区经部分熔融残留的难熔残片(Shellnutt et al., 2010);(4)岩浆作用过程中暗色矿物的析离体(Donaire et al., 2005).在岩石学特征方面,将军墓花岗闪长斑岩中没有发现镁铁质角砾及块体,并且暗色微粒包体含有石英眼斑(图 3c),由于石英不是玄武质熔浆的液相线或近液相线矿物.因此,暗色微粒包体中不可能出现石英斑晶.而暗色微粒包体中出现石英眼斑,说明铁镁质岩浆和长英质岩浆在深部发生混合.另外,暗色微粒包体含有少量的针状磷灰石也说明温度较高的偏基性岩浆和温度较低的中酸性岩浆在岩浆房中发生混合(Pitcher, 1997);在地球化学特征方面,相对于基性岩类,暗色微粒包体具有相对较低的Mg#(45~46)和FeOT(6.82%~8.39%).都说明岩浆作用过程中有壳幔混合作用的存在,这与MgO-FeOT图解中(图 7a)花岗闪长斑岩样品显示明显的混合岩浆趋势特征一致.暗色微粒包体可能为镁铁质岩浆与长英质寄主岩浆发生混合不完全而残留的镁铁质物质.
图 7 将军墓花岗闪长斑岩MgO-FeOT图解(a)和SiO2-A/CNK图解(b)图a底图据朱玉娣等(2014);图b底图据Zorpi et al. (1989)Fig. 7. MgO-FeOT diagram (a) and SiO2-A/CNK diagram (b) of Jiangjunmu granodiorite porphyry将军墓花岗闪长斑岩的MgO值为1.50%~1.59%(或Mg#值43~44)接近于变玄武岩在1~4 GPa压力条件下熔融形成的熔体(Mg#值45),说明花岗闪长斑岩形成过程中有幔源成分的加入(Rapp et al., 1999),这与SiO2-A/CNK图解(图 7b)中显示壳幔岩浆混合趋势一致.Nb、Ta、Zr、Hf在岩浆演化过程中不易发生迁移(Hofmann,1988).将军墓花岗闪长斑岩和暗色微粒包体的Nb/Ta比值(10.2~13.8,均值为13;11.5~12.8,均值为12.2),介于下地壳(8.3,Rudnick and Gao, 2003)和原始地幔(17.4,Sun and McDonough, 1989).Zr/Hf比值(32.2~36.9,均值为35.3;29.1~37.2,均值为33.2),除少部分样品高于大陆地壳外,大部分介于球粒陨石(Zr/Hf=34.2,Sun and McDonough, 1989)和大陆地壳(Zr/Hf=36.7,Taylor and McLennan, 1995),表明岩浆作用过程中经历了壳幔混合作用.此外,锆石Hf同位素结果显示,将军墓花岗闪长斑岩εHf(t)介于-1.7~+1.01,在εHf(t)直方图和U-Pb年龄-εHf(t)图解中(图 8),显示岩浆作用过程中有幔源成分的加入.都说明岩浆作用过程中有壳幔混合作用的存在.结合区域构造动力学演化背景,认为东昆仑在晚三叠世时期,俯冲板片发生断离,引起幔源岩浆底侵,在下地壳底部引起热流异常,引发下地壳部分熔融,形成长英质岩浆.随着幔源岩浆的不断底侵,下地壳部分熔融加剧,长英质岩浆不断熔出,2种岩浆开始发生不同比例混合,初期表现为基性熔浆团分散在长英质岩浆中的物理混合,然后发生化学扩散成分均一化(Neves and Vauchez, 1995).东昆仑晚三叠世中酸性岩类保留下来的幔源和壳源两种熔体,由于在深部岩浆作用过程中两种岩浆的混合比例、物质成分、温度及粘度等差别的不同,导致混合作用和化学扩散作用也不尽相同(莫宣学等,2007;张明东等,2018).混合机制有:(1)当两种岩浆混合不完全,则结晶不完全的玄武质岩浆在上升过程中,进入到酸性岩浆房中并发生不同程度的岩浆混合作用,产生了含有基性包体的花岗质岩石(Barbarin,2005);(2)当基性岩浆注入到熔融的酸性岩浆中,则形成较为均一的花岗质岩石(Barbarin,2005;熊富浩,2014;张明东等,2018);(3)岩浆作用后期,没有经过混合作用的基性岩浆,沿断裂构造上涌,经历少量地壳混染,在浅部固结成岩形成基性岩墙(Barbarin,2005).从岩相学和岩石地球化学特征分析,将军墓花岗闪长斑岩应属于相对少量幔源岩浆注入长英质岩浆中而发生不完全混和,形成含少量暗色微粒包体的含矿岩石.
5.2 源区特征和下地壳部分熔融
研究结果表明,石榴石或角闪石作为岩浆源中的残留矿物,对岩浆熔体的重稀土元素分配和Y/Yb比值具有显著影响.如果岩浆源区以石榴石为残余矿物,则熔体的重稀土元素强烈富集,Y/Yb > 10和(Ho/Yb)N > 1.2(Green,1994).相反,相对于重稀土,角闪石倾向于中稀土元素富集特征(Green, 1994; Davidson et al., 2007).如果在源区中以角闪石为主要残留相,则熔体具有相对平坦的重稀土分配模式,其Y/Yb比值接近于10和(Ho/Yb)N≈1.2 (Rollinson, 2003).将军墓花岗闪长斑岩中的Y/Yb比值(11.1~13.7,平均12.6)和(Ho/Yb)N(1.2~1.4,平均1.3)接近以角闪石为残留的源区特征,这与YbN-(La/Yb)N图解中样品与角闪石熔融曲线相一致(图 9).在球粒陨石稀土元素配分和原始地幔微量元素蛛网图解中(图 6),显示轻稀土分异明显,重稀土分配相对较为平坦,无明显的Y和Yb亏损,并且具有较低的Yb/Lu(6.8~7.8)和Dy/Yb(2.5~2.7)比值,低于以石榴子石为源区残留相形成的熔体(Qin et al., 2010),也表明石榴子石不是源区主要残留相.说明源区中可能以角闪石为主要残留相, 伴有少量斜长石的分离结晶(Defant and Drummond, 1990).
图 9 将军墓花岗闪长斑岩YbN-(La/Yb)N图解底图据Defant and Drummond(1990),球粒陨石标准化数据引自Sun and McDonough (1989)Fig. 9. YbN-(La/Yb)N diagram of Jiangjunmu granodiorite porphyry将军墓花岗闪长斑岩具有相对较高的SiO2(平均为65.92%)和Al2O3(平均为15.44%),富集大离子亲石元素(Zr)和亏损高场强元素(Nb、Ta、Ti),表明源区以陆壳成分为主(Green,1994).在Ni-Cr图解和Sr/Y-(La/Yb)N图解中(图 10),样品点均落在下地壳部分熔融范围之内.在La/Yb-La图解中(图 11a),样品点均显示明显的部分熔融趋势,说明将军墓花岗闪长斑岩为下地壳部分熔融.东昆仑晚三叠纪含矿花岗岩εHf(t)集中在-5~-1之间,两阶段模式年龄TDM2介于1 102~1 674 Ma,反映源区为中元古代下地壳(张炜等,2016).将军墓花岗闪长斑岩εHf(t)值变化于-1.7~+1.01之间,主体为负值(附表 2),两阶段模式年龄TDM2介于1 064~1 214 Ma,反映源区主体为中元古代下地壳,与三叠纪含矿花岗岩源区特征一致,并有少量的地幔物质加入.未经拆沉作用的加厚下地壳经过部分熔融所形成的熔体基本未经历或经历少量的壳幔相互作用(张明东等,2018).加厚的下地壳以含水量低的榴辉岩相为主,发生拆沉作用沉入软流圈,会使下地壳物质进入地幔深部,在熔融过程中使熔体和地幔发生比较充分的反应,使得岩浆的MgO、Mg#、Cr、Ni、Co含量显著提高(Rapp et al., 1999),且具有高的Rb/Sr比值(0.01~0.05)(Huang et al., 2009).将军墓花岗闪长斑岩具有较低的MgO、Mg#、Cr、Ni、Co含量和高Rb/Sr值(0.40~0.58),明显区别于拆沉的加厚下地壳部分熔融形成的岩石.在CaO-Sr图解中(图 11b),岩石全部落入正常地壳形成的花岗岩区域,说明将军墓花岗闪长斑岩的形成与加厚下地壳部分熔融无关.
图 10 将军墓花岗闪长斑岩Cr- Ni图解(a)和(La/Yb)N -Sr/Y图解(b)图a据Wang et al.(2006);图b据Liu et al.(2010)和Ling et al.(2013). (La/Yb)N球粒陨石标准化数据根据Sun and McDonough (1989)Fig. 10. Cr- Ni diagram (a) and (La/Yb)N -Sr/Y diagram (b) of Jiangjunmu granodiorite porphyry5.3 构造背景及意义
东昆仑位于我国青藏高原北部,与柴达木地块和西秦岭相接,是重要的构造-岩浆活动带,同时也是特提斯洋发展演化的重要地区(熊富浩,2014).前人根据岩石学、年代学等证据对东昆仑构造演化进行了大量的研究,认为古特提斯洋在晚二叠世时开始俯冲,俯冲作用一直持续至中三叠世,形成晚二叠世-早三叠世的俯冲型花岗岩类(莫宣学等,2007;陈国超等,2013).在中三叠世237~210 Ma以后东昆仑进入碰撞-后碰撞构造环境(莫宣学等,2007;熊富浩,2014;Xia et al.,2015).主要证据有:(1)伴随大量的壳幔岩浆活动,如祁漫塔格玛兴花岗岩(218 Ma)(吴祥珂等,2011)、中晚三叠世花岗岩230~237 Ma(丰成友等,2012)、尕林格铁多金属矿床花岗岩(228.3~234.4 Ma)(高永宝等,2012)、卡而却卡矿区花岗闪长岩(234.4 Ma)(高永宝,2013)、虎头崖花岗闪长岩(235.4 Ma)(高永宝,2013)、瑙木浑沟闪长玢岩(215 Ma)(张明东等,2018).本文获得将军墓花岗闪长斑岩形成时代为218 Ma,接近或晚于上述壳幔岩浆活动时代,暗示将军墓花岗闪长斑岩形成于后碰撞伸展构造环境;(2)在R1-R2图解中(图 12),大部分样品点均落入造山晚期花岗岩构造环境;(3)岩石表现出高钾钙碱性特征(图 5b),与东昆仑地区晚三叠世后碰撞高钾钙碱性-钾玄岩系列岩石(花岗闪长岩、二长花岗岩和正长花岗岩)特征一致(Pearce, 1996;陈国超等,2017);(4)镁铁质岩体是幔源岩浆底侵事件或造山作用体制向造山后伸展体制转换的标志(罗照华等, 2002).在晚三叠世,东昆仑出现如加鲁河中基性岩体(220 Ma)(陈国超等,2017)、热水基性岩体(218~227 Ma)(Hu et al., 2016),也说明东昆仑在晚三叠世进入后碰撞环境;(5)在晚三叠世,东昆仑地区出露少量的A型花岗岩(张炜等,2016; Hu et al., 2016),标志着东昆仑处于地壳伸展拉张环境(陈国超等,2017);(6)地球物理资料显示, 东昆仑地区普遍缺失基性下地壳, 在青藏高原内部存在高速异常带, 说明东昆仑地区可能存在拆沉作用(许志琴等, 2004);(7)在沉积学方面,东昆南地体上三叠统八宝山组为陆相碎屑岩沉积组合.都说明东昆仑在晚三叠世完全进入到后碰撞构造演化阶段(陈国超等,2017).
在深部岩浆房中,幔源岩浆底侵以及壳幔岩浆的混合为斑岩型矿床及含矿斑岩的形成发挥了重要的作用(Richards and Kerrich, 2007;Hou et al., 2011), 壳幔大规模相互作用可能为区域大规模金属成矿提供大量成矿物质.实验岩石学研究证明,长英质岩浆具有较高的Pb、Zn、Ag等元素(Mungall,2002),却具有低的S、Cu、Au含量(陆壳平均含量为27×10-6;Rudnick and Gao, 2003).但是,幔源岩浆底侵至岩浆房与长英质岩浆发生混合形成的岩浆具有高的S和Cu(Au)含量(70×10-6~150×10-6;Hofmann,1988).东昆仑地区在早中泥盆世和早-晚三叠世,壳-幔混源花岗岩浆活动强烈(陈国超等,2013;高永宝等,2015),形成与之有关的斑岩型或热液型多金属矿床的含矿岩石具有壳-幔混源特征(丰成友等,2010;张炜等,2016).将军墓含矿花岗闪长斑岩是晚三叠世壳-幔相互作用成岩-成矿的体现.该岩体不仅仅是东昆仑古特提斯构造岩浆事件的产物,同时具备良好的成矿条件,为东昆仑晚三叠世岩浆作用研究和寻找与之有关的斑岩型或热液型多金属矿床提供重要的证据.
6. 结论
(1)将军墓含矿花岗闪长斑岩形成时代为218.8±1.3 Ma,属晚三叠世岩浆活动的产物,具有高硅、富铝、富钾,低镁特征,属高钾钙碱性系列岩石,富集大离子亲石元素和亏损高场强元素.
(2)结合年代学、岩石地球化学特征和区域构造背景,认为将军墓含矿花岗闪长斑岩形成于东昆仑晚三叠世后碰撞伸展环境,源于中元古代下地壳重熔,有少量幔源岩浆加入.
(3)将军墓含矿花岗闪长斑岩是东昆仑晚三叠世壳幔相互作用成岩-成矿的体现,该岩体不仅仅是东昆仑古特提斯构造岩浆事件的产物,同时具备良好的成矿条件,为东昆仑晚三叠世岩浆作用研究和寻找与之有关的斑岩型或热液型多金属矿床提供重要的证据.
附表见本刊官网(http://www.earth-science.net).
致谢: 感谢两位匿名审稿人耐心、细致入微的审阅及宝贵的意见和建议. -
图 1 中国大地构造格架示意图(a);东昆仑造山带示意图(b);东昆仑三叠纪矿花岗岩类年龄统计直方图(c);东昆仑地区岩浆岩分布简图(d)
图a底图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2019)1675号的标准地图制作,底图无修改;,图b,d底图引自Hu et al.(2016);图c数据张炜等(2016)、丰成友等(2012)、张明东等(2018)
Fig. 1. Outline of the geological framework of China(a); schematic geological map of the East Kunlun orogenic belt (EKB) (b); age histogram of granitoids at the Triassic in the East Kunlun(c); Simplified distribution map of magmatic rocks along the East Kunlu(d)
图 5 将军墓花岗闪长斑岩SiO2-(Na2O+K2O)图解(a)、SiO2-K2O图解(b)和A/CNK-A/NK图解(c)
图a据Middlemost(1994);图b据Peccerillo and Taylor(1976);图c据Maniar and Piccolio(1989)
Fig. 5. Diagrams of SiO2-(Na2O+K2O)(a), SiO2-K2O(b) and A/CNK-A/NK(c) of Jiangjunmu granodiorite porphyry
图 6 将军墓花岗闪长斑岩及暗色微粒包体稀土球粒陨石标准化配分曲线和原始地幔标准化蛛网图解
球粒陨石和原始地幔数据引自Sun and McDonough(1989)
Fig. 6. Chondrite-normalized rare earth elements pattern and primitive mantle-normalized elements spider diagram of Jiangjunmu granodiorite porphyry and MME
图 7 将军墓花岗闪长斑岩MgO-FeOT图解(a)和SiO2-A/CNK图解(b)
图a底图据朱玉娣等(2014);图b底图据Zorpi et al. (1989)
Fig. 7. MgO-FeOT diagram (a) and SiO2-A/CNK diagram (b) of Jiangjunmu granodiorite porphyry
图 9 将军墓花岗闪长斑岩YbN-(La/Yb)N图解
底图据Defant and Drummond(1990),球粒陨石标准化数据引自Sun and McDonough (1989)
Fig. 9. YbN-(La/Yb)N diagram of Jiangjunmu granodiorite porphyry
图 10 将军墓花岗闪长斑岩Cr- Ni图解(a)和(La/Yb)N -Sr/Y图解(b)
图a据Wang et al.(2006);图b据Liu et al.(2010)和Ling et al.(2013). (La/Yb)N球粒陨石标准化数据根据Sun and McDonough (1989)
Fig. 10. Cr- Ni diagram (a) and (La/Yb)N -Sr/Y diagram (b) of Jiangjunmu granodiorite porphyry
图 11 将军墓花岗闪长斑岩La/Yb-La (a)和CaO-Sr (b)图解
图a据Furman and Graham(1999);图b底图据He et al.(2011)
Fig. 11. La/Yb-La (a) and CaO-Sr (b) diagram of Jiangjunmu granodiorite porphyry
图 12 将军墓花岗闪长斑岩R1-R2图解
Fig. 12. R1-R2 diagram of Jiangjunmu granodiorite porphyry
表 1 将军墓花岗闪长斑岩和暗色微粒包体主微量元素地球化学分析数据
Table 1. Whole rock major and trace element contents of Jiangjunmu granodiorite porphyry and MME
样品编号 Jjm-01 Jjm-02 Jjm-03 Jjm01-1 Jjm01-2 Jjm01-3 Jjm01-4 Jjm01-5 Jjm01-6 Jjm01-7 Jjm01-8 Jjm01-9 岩石类型 暗色微粒包体(MME) 花岗闪长斑岩 SiO2 57.19 57.29 54.98 65.50 65.84 65.58 65.82 65.23 65.25 66.31 66.54 67.25 TiO2 0.76 0.77 1.20 0.67 0.65 0.68 0.66 0.68 0.69 0.63 0.60 0.63 Al2O3 17.33 17.75 17.51 15.35 15.31 15.47 15.42 15.3 15.45 15.44 15.47 15.75 TFeO 6.82 7.36 8.39 4.07 4.04 4.07 4.06 4.13 4.14 3.93 3.82 3.95 MnO 0.13 0.14 0.17 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.07 MgO 2.93 3.09 3.42 1.59 1.56 1.58 1.56 1.58 1.55 1.54 1.50 1.55 CaO 2.77 2.09 2.99 2.29 2.54 2.31 2.37 2.26 2.31 2.36 2.29 2.32 Na2O 4.63 4.72 5.43 3.69 3.40 3.58 3.60 3.67 3.72 4.03 4.07 4.04 K2O 4.58 4.47 4.27 4.17 4.06 4.10 4.12 4.19 4.22 4.04 4.10 4.12 P2O5 0.16 0.16 0.23 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.14 0.15 LOI 3.31 2.74 2.10 2.46 2.43 2.30 2.24 2.47 2.39 2.14 2.11 2.45 SUM 100.61 100.58 100.69 99.99 100.04 99.88 100.06 99.73 99.94 100.64 100.70 102.28 Mg# 46 46 45 44 44 44 43 43 43 44 44 44 Li 69.17 77.09 86.69 56.40 60.80 58.94 60.31 51.84 53.51 53.49 51.48 52.67 Be 2.15 2.33 2.51 2.24 2.63 2.39 2.53 2.21 2.3 2.35 2.22 2.32 Sc 22.11 22.79 17.59 6.98 7.93 7.65 7.70 7.72 7.61 7.70 7.55 8.45 V 94.39 97.65 74.04 39.33 39.03 41.15 41.37 40.86 40.60 41.66 39.20 40.84 Cr 58.98 63.65 23.61 7.15 8.24 7.34 7.59 8.87 7.95 11.56 8.90 8.76 Co 30.45 23.30 24.32 32.38 23.80 26.73 23.22 32.31 29.01 24.57 25.43 26.24 Ni 3.75 3.83 3.65 2.53 2.34 2.47 2.39 2.78 2.62 2.16 2.38 2.42 Cu 25.21 35.72 6.31 11.07 12.79 6.42 6.48 3.91 5.41 5.17 6.52 5.50 Zn 319.50 429.55 197.43 82.53 72.50 72.52 73.99 73.39 74.76 72.15 68.70 73.99 Ga 24.92 26.71 28.60 20.06 20.67 21.48 21.77 20.6 20.69 20.20 19.79 19.80 Rb 173.22 172.37 51.64 204.71 202.81 204.94 210.74 190.16 200.27 183.69 182.36 183.20 Sr 354.6 341 567.98 482.62 463.59 482.34 483.65 457.85 500.44 319.02 326.65 331.47 Y 45.95 50.08 16.43 19.93 21.93 20.82 20.07 20.39 21.20 19.47 18.93 19.16 Zr 141.91 142.99 240.02 207.83 215.00 207.26 224.70 194.62 217.88 196.44 195.99 208.52 Nb 15.24 15.39 18.97 14.77 14.78 15.30 15.51 14.98 15.02 13.90 13.56 13.91 Sn 2.17 2.22 1.25 2.69 1.86 2.31 2.70 2.19 2.34 2.18 2.23 2.22 Cs 6.05 6.49 13.11 7.78 12.77 10.49 9.89 7.04 7.70 4.26 4.31 4.40 Ba 676.39 632.45 233.36 773.58 728.22 741.27 765.04 819.96 785.65 607.64 640.9 624.33 Lu 0.53 0.58 0.23 0.21 0.23 0.21 0.21 0.21 0.21 0.23 0.24 0.25 Hf 4.87 4.73 6.46 5.74 5.89 5.68 6.09 5.34 5.91 5.87 6.08 6.48 Ta 1.32 1.27 1.48 1.07 1.05 1.08 1.09 1.07 1.04 1.23 1.32 1.29 Tl 0.90 0.88 0.26 1.08 1.06 1.04 1.15 1.11 1.12 0.82 0.90 0.91 Pb 33.84 43.6 18.75 24.90 24.35 25.67 25.37 23.9 23.99 18.59 20.04 19.89 Th 15.26 14.21 8.23 25.83 27.30 28.69 28.99 26.03 26.51 25.05 27.12 24.88 U 2.64 2.48 2.33 3.19 3.44 3.40 3.50 3.37 3.35 2.76 2.92 2.84 La 42.37 41.99 32.14 54.50 54.60 62.70 59.50 54.50 56.70 51.70 53.57 48.58 Ce 108.18 110.14 65.43 105.00 104.00 119.00 113.00 104.00 108.00 107.24 109.82 98.97 Pr 15.38 16.13 8.07 11.60 11.90 13.20 12.50 11.80 12.10 11.97 12.21 11.18 Nd 68.94 71.47 31.88 42.30 43.30 46.8 44.70 43.00 43.80 44.01 44.98 42.30 Sm 16.32 17.16 6.29 7.90 8.08 8.61 8.22 8.00 8.07 8.30 8.35 7.95 Eu 1.86 1.90 1.15 1.21 1.16 1.20 1.20 1.25 1.19 1.18 1.25 1.25 Gd 13.25 13.51 4.85 5.62 5.85 6.05 5.87 5.84 5.72 5.96 5.75 5.68 Tb 1.88 1.97 0.67 0.76 0.83 0.82 0.77 0.77 0.77 0.79 0.80 0.79 Dy 10.77 11.05 3.55 4.11 4.33 4.17 3.97 4.18 4.19 4.20 4.32 4.24 Ho 1.86 1.95 0.63 0.68 0.74 0.72 0.66 0.68 0.70 0.71 0.73 0.74 Er 4.92 5.05 1.72 1.87 2.07 1.91 1.88 1.93 2.02 1.90 1.90 1.89 Tm 0.64 0.68 0.24 0.24 0.25 0.25 0.23 0.23 0.23 0.26 0.26 0.26 Yb 3.90 4.17 1.54 1.54 1.61 1.52 1.56 1.63 1.60 1.65 1.71 1.71 ΣREE 290.79 297.76 158.39 237.54 238.95 267.16 254.27 238.02 245.3 240.11 245.90 225.77 LREE 253.05 258.79 144.97 222.51 223.04 251.51 239.12 222.55 229.86 224.40 230.19 210.22 HREE 37.75 38.97 13.42 15.03 15.91 15.65 15.15 15.47 15.44 15.71 15.71 15.55 LREE/HREE 6.70 6.64 10.80 14.80 14.02 16.07 15.78 14.39 14.89 14.29 14.65 13.52 (La/Yb)N 7.80 7.22 14.96 25.38 24.33 29.59 27.36 23.98 25.42 22.48 22.51 20.42 δEu 0.38 0.37 0.61 0.53 0.49 0.48 0.50 0.53 0.51 0.49 0.52 0.54 δCe 1.04 1.04 0.97 0.97 0.96 0.96 0.97 0.96 0.96 1.02 1.01 1.00 注:主量元素单位为%;微量和稀土元素单位为10-6;Mg#=Mg2+/(Mg2++Fe2+);(La/Yb)N标准化数据引自Sun and McDonough (1989). -
[1] Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos, 80(1-4): 155-177.https://doi.org/10.1016/j.lithos.2004.05.010 [2] Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8 [3] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2013.Late Triassic Magma Mixing in the East Kunlun Orogenic Belt:A Case Study of Helegang Xilikete Granodiorites.Geology in China, 40(4):1044-1065(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201304006.htm [4] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2017.Age and Petrogenesis of Jialuhe Basic-Intermediate Pluton in Xiangjia'nanshan Granite Batholith in the Eastern Part of East Kunlun Orogenic Belt, and Its Geological Significance. Geotectonica et Metallogenia, 41(6):1097-1115(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201706008 [5] Chen, H.W., Luo, Z.H., Mo, X.X., et al., 2005.Underplating Mechanism of Triassic Granite of Magma Mixing Origin in the East Kunlun Orogenic Belt.Geology in China, 32(3):386-395(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200503006 [6] Davidson, J., Turner, S., Handley, H., et al., 2007. Amphibole "Sponge" in Arc Crust?. Geology, 35(9): 787.https://doi.org/10.1130/g23637a.1 [7] Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0 [8] Donaire, T., Pascual, E., Pin, C., et al., 2005. Microgranular Enclaves as Evidence of Rapid Cooling in Granitoid Rocks: The Case of the Los Pedroches Granodiorite, Iberian Massif, Spain. Contributions to Mineralogy and Petrology, 149(3): 247-265. https://doi.org/10.1007/s00410-005-0652-0 [9] Feng, C.Y., Li, D.S., Wu, Z.S., et al., 2010.Major Types, Time-Space Distribution and Metallogeneses of Polymetallic Deposits in the Qimantage Metallogenic Belt, Eastern Kunlun Area.Northwestern Geology, 43(4):10-17(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201004002 [10] Feng, C.Y., Wang, S., Li, G.C., et al., 2012.Middle to Late Triassic Granitoids in the Qimantage Area, Qinghai Province, China:Chronology, Geochemistry and Metallogenic Significances.Acta Petrologica Sinica, 28(2):665-678(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202024 [11] Furman, T., Graham, D., 1999. Erosion of Lithospheric Mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. Lithos, 48(1-4): 237-262. https://doi.org/10.1016/s0024-4937(99)00031-6 [12] Gao, Y.B., 2013. The Intermediate-Acid Intrusive Magmatism and Mineralization in Qimantag, East Kunlun Mountains(Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). [13] Gao, Y.B., Li, K., Qian, B., et al., 2015.The Genesis of Granodiorites and Dark Enclaves from the Kaerqueka Deposit in East Kunlun Belt:Evidence from Zircon U-Pb Dating, Geochemistry and Sr-Nd-Hf Isotopic Compositions.Geology in China, 42(3):646-662(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0024493715002686 [14] Gao, Y.B., Li, W.Y., Ma, X.G., et al., 2012.Genesis, Geochronology and Hf Isotopic Compositions of the Magmatic Rocks in Galinge Iron Deposit, Eastern Kunlun.Journal of Lanzhou University(Natural Sciences), 48(2):36-47(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lzdxxb201202006 [15] Green, T. H., 1994. Experimental Studies of Trace-Element Partitioning Applicable to Igneous Petrogenesis-Sedona 16 Years Later. Chemical Geology, 117(1-4): 1-36.https://doi.org/10.1016/0009-2541(94)90119-8 [16] He, Y. S., Li, S. G., Hoefs, J., et al., 2011. Post-Collisional Granitoids from the Dabie Orogen: New Evidence for Partial Melting of a Thickened Continental Crust. Geochimica et Cosmochimica Acta, 186: 351-356. https://doi.org/10.1016/j.gca.2011.04.011 [17] Hofmann, A. W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. https://doi.org/10.1016/0012-821x(88)90132-x [18] Hou, Z. Q., Zhang, H. R., Pan, X. F., et al., 2011. Porphyry Cu (-Mo-Au) Deposits Related to Melting of Thickened Mafic Lower Crust: Examples from the Eastern Tethyan Metallogenic Domain. Ore Geology Reviews, 39(1-2): 21-45.https://doi.org/10.1016/j.oregeorev.2010.09.002 [19] Hu, Y., Niu, Y. L., Li, J. Y., et al., 2016. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245: 205-222.https://doi.org/10.1016/j.lithos.2015.05.004 [20] Hu, Z.C., Zhang, W., Liu, Y. S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2): 1152-1157. https://doi.org/10.1021/ac503749k [21] Huang, X. L., Xu, Y. G., Lan, J. B., et al., 2009. Neoproterozoic Adakitic Rocks from Mopanshan in the Western Yangtze Craton: Partial Melts of a Thickened Lower Crust. Lithos, 112(3-4): 367-381. https://doi.org/10.1016/j.lithos.2009.03.028 [22] Ling, M. X., Li, Y., Ding, X., et al., 2013. Destruction of the North China Craton Induced by Ridge Subductions. The Journal of Geology, 121(2): 197-213. https://doi.org/10.1086/669248 [23] Liu, C. D., Mom, X. X., Luo, Z. H., 2004. The Crust-Ceramic Magmatic Mixing in East Kunlun:Evidence from Zircon SHRIMP Geochronology. Chinese Science Bulletin, 49(6):596-602(in Chinese). doi: 10.1360/csb2004-47-6-596 [24] Liu, L., Qiu, J. S., Li, Z., 2013. Origin of Mafic Microgranular Enclaves (MMEs) and Their Host Quartz Monzonites from the Muchen Pluton in Zhejiang Province, Southeast China: Implications for Magma Mixing and Crust-Mantle Interaction. Lithos, 160-161: 145-163. https://doi.org/10.1016/j.lithos.2012.12.005 [25] Liu, S. A., Li, S. G., He, Y. S., et al., 2010. Geochemical Contrasts between Early Cretaceous Ore-Bearing and Ore-Barren High-Mg Adakites in Central-Eastern China: Implications for Petrogenesis and Cu-Au Mineralization. Geochimica et Cosmochimica Acta, 74(24): 7160-7178.https://doi.org/10.1016/j.gca.2010.09.003 [26] Ludwig, K. R., 2003. ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley, 39. doi: 10.1016-j.immuni.2011.10.010/ [27] Luo, M. F., M, X. X., Yu, X. H., et al., 2014. Zircon LA-ICP-MS U-Pb Age Dating, Petrogenesis and Tectonic Implications of the Late Triassic Granites from the Xiangride Area, East Kunlun. Acta Petrologica Sinica, 30(11):3229-3241(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201411010 [28] Luo, Z.H., Ke, S., Cao, Y.Q., et al., 2002.Late Indosinian Mantle-Derived Magmatism in the East Kunlun.Regional Geology of China, 21(6):292-297(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200206003 [29] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635: tdog>2.3.co; 2 [30] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [31] Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=fc5ea73d95680f7cf00988cb80fbb1da&encoded=0&v=paper_preview&mkt=zh-cn [32] Mungall, J. E., 2002. Roasting the Mantle: Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits. Geology, 30(10): 915.https://doi.org/10.1130/0091-7613(2002)030<0915: rtmsma>2.0.co; 2 [33] Neves, S. P., Vauchez, A., 1995. Successive Mixing and Mingling of Magmas in a Plutonic Complex of Northeast Brazil. Lithos, 34(4): 275-299. https://doi.org/10.1016/0024-4937(94)00012-q [34] Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005 [35] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81.https://doi.org/10.1007/bf00384745 [36] Pitcher, W.S., 1997. The Nature and Origin of Granite. Blackie Academic & Professional, Glasgow.https://doi.org/10.1007/978-94-011-5832-9 [37] Qin, J. F., Lai, S. C., Grapes, R., et al., 2010. Origin of LateTriassic High-Mg Adakitic Granitoid Rocks from the Dongjiangkou Area, Qinling Orogen, Central China: Implications for Subduction of Continental Crust. Lithos, 120(3-4): 347-367. https://doi.org/10.1016/j.lithos.2010.08.022 [38] Qin, Z.W., Ma, C.Q., Fu, J.M., et al., 2018.The Origin of Mafic Enclaves in Xiangjia Granitic Pluton of East Kunlun Orogenic Belt:Evidence from Petrography and Geochemistry.Earth Science, 43(7):2420-2437(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201807015 [39] Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4):335-356. https://doi.org/10.1016/s0009-2541(99)00106-0 doi: 10.1016/S0009-2541(99)00106-0 [40] Richards, J. P., Kerrich, R., 2007. Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology, 102(4): 537-576.https://doi.org/10.2113/gsecongeo.102.4.537 [41] Rollinson, H., 2003. Metamorphic History Suggested by Garnet-Growth Chronologies in the Isua Greenstone Belt, West Greenland. Precambrian Research, 126(3-4): 181-196. https://doi.org/10.1016/s0301-9268(03)00094-9 [42] Rudnick, R. L., Gao, S., 2003. The Composition of the Continental Crust. In: Rudnick, R.L., Holland, H.D., Turekian, K.K.L., eds., The Crust Treatise on Geochemistry vol. 3. Elsevier, Oxford. https://doi.org/10.1016/0016-7037(95)00038-2 [43] Shellnutt, J. G., Jahn, B. M., Dostal, J., 2010. Elemental and Sr-Nd Isotope Geochemistry of Microgranular Enclaves from Peralkaline A-Type Granitic Plutons of the Emeishan Large Igneous Province, SW China. Lithos, 119(1-2): 34-46. https://doi.org/10.1016/j.lithos.2010.07.011 [44] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19 [45] Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241.https://doi.org/10.1029/95rg00262 [46] Wang, Q., Wyman, D. A., Xu, J. F., et al., 2006. Petrogenesis of Cretaceous Adakitic and Shoshonitic Igneous Rocks in the Luzong Area, Anhui Province (Eastern China): Implications for Geodynamics and Cu-Au Mineralization. Lithos, 89(3-4): 424-446. https://doi.org/10.1016/j.lithos.2005.12.010 [47] Wang, D.Z., Xie, L., 2008.Magma Mingling:Evidence from Enclaves.Geological Journal of China Universities, 14(1):16-21(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200801002 [48] Wu, F. Y., LI, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [49] Wu, X. K., Meng, F. C., Xu, H., et al., 2011. Zircon U-Pb Dating, Geochemistry and Nd-Hf Isotopic Compositions of the Maxingdaban Late Triassic Granitic Pluton from Qimantag in the Eastern Kunlun. Acta Petrologica Sinica, 27(11):3380-3394(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111018 [50] Wu, Y.B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15):1554-1569(in Chinese). doi: 10.1007/BF03184122 [51] Xia, R., Deng, J., Qing, M., et al., 2017. Petrogenesis of ca. 240 Ma Intermediate and Felsic Intrusions in the Nan'getan: Implications for Crust-Mantle Interaction and Geodynamic Process of the East Kunlun Orogen. Ore Geology Reviews, 90: 1099-1117. https://doi.org/10.1016/j.oregeorev.2017.04.002 [52] Xia, R., Wang, C. M., Qing, M., et al., 2015. Molybdenite Re-Os, Zircon U-Pb Dating and Hf Isotopic Analysis of the Shuangqing Fe-Pb-Zn-Cu Skarn Deposit, East Kunlun Mountains, Qinghai Province, China. Ore Geology Reviews, 66: 114-131. https://doi.org/10.1016/j.oregeorev.2014.10.024 [53] Xiong, F.H., 2014. Temporal and Spatial Distribution, Petrology and Geological Significance of Paleo-Tethys Granites in the Eastern Part of Eastern Kunlun Orogenic Belt (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1367912015000498 [54] Xu, Q.L., Sun, F.Y., Li, B.L., et al., 2014.Geochronological Dating, Geochemical Characteristics and Tectonic Setting of the Granite-Porphyry in the Mohexiala Silver Polymetallic Deposit, Eastern Kunlun Orogenic Belt.Geotectonica et Metallogenia, 38(2):421-433(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201402021 [55] Xu, Z.Q., C, J.W., Z, J.X., 1996. Structural Dynamics of Continental Mountain Chain Deformation. Metallurgical Industry Press, Beijing, 204-225(in Chinese). https://pubs.geoscienceworld.org/books/book/561/chapter/3802672/Thick-skinned-and-thin-skinned-styles-of [56] Xu, Z.Q., Jiang, M., Yang, J.S., et al., 2004.Mantle Structure of Qinghai-Tibet Plateau:Mantle Plume, Mantle Shear Zone and Delamination of Lithospheric Slab.Earth Science Frontiers, 11(4):329-343(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200404000.htm [57] Yang, T.L., Jiang, S.Y., 2015.Petrogenesis of Intermediate-Felsic Intrusive Rocks and Mafic Microgranular Enclaves(MMEs)from Dongleiwan Deposit in Jiurui Ore District, Jiangxi Province:Evidence from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes.Earth Science, 40(12):2002-2020(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201512006.htm [58] Zhang, M.D., Ma, C.Q., Wang, L.X., et al., 2018.Subduction-Type Magmatic Rocks in Post-Collision Stage:Evidence from Late Triassic Diorite-Porphyrite of Naomuhungou Area, East Kunlun Orogen.Earth Science, 43(4):1183-1206(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201804016 [59] Zhang, W., Zhou, H.W., Zhu, Y.H., et al., 2016.The Evolution of Triassic Granites Associated with Mineralization within East Kunlun Orogenic Belt:Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of the Mohexiala Pluton.Earth Science, 41(8):1334-1348(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201608006.htm [60] Zhu, Y. T., Ye, X., Zhang, D., 2014. The Origion of the Porphyry Mo(Cu) Deposit in Tongcun, Western Zhejiang Provinice:Evidence from Geochemistry, SHRIMP Zircon U-Pb Geochronology and Sr-Nd Isotopics. Earth Science Frontiers, 21(4):221-234(in Chinese with English abstract). [61] Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010 [62] Zorpi, M. J., Coulon, C., Orsini, J. B., et al., 1989. Magma Mingling, Zoning and Emplacement in Calc-Alkaline Granitoid Plutons. Tectonophysics, 157(4): 315-329. https://doi.org/10.1016/0040-1951(89)90147-9 [63] 陈国超, 裴先治, 李瑞保, 等, 2013.东昆仑造山带晚三叠世岩浆混合作用:以和勒冈希里克特花岗闪长岩体为例.中国地质, 40(4):1044-1065. doi: 10.3969/j.issn.1000-3657.2013.04.005 [64] 陈国超, 裴先治, 李瑞保, 等, 2017.东昆仑东段香加南山花岗岩基中加鲁河中基性岩体形成时代、成因及其地质意义.大地构造与成矿学, 41(6):1097-1115. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201706008 [65] 谌宏伟, 罗照华, 莫宣学, 等, 2005.东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制.中国地质, 32(3):386-395. doi: 10.3969/j.issn.1000-3657.2005.03.006 [66] 丰成友, 李东生, 吴正寿, 等, 2010.东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用.西北地质, 43(4):10-17. doi: 10.3969/j.issn.1009-6248.2010.04.002 [67] 丰成友, 王松, 李国臣, 等, 2012.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义.岩石学报, 28(2):665-678. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202024 [68] 高永宝, 2013.东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用(博士学位论文).西安:长安大学. http://cdmd.cnki.com.cn/ResetPage.aspx?u=/Article/CDMD-11941-1014032422.htm&t=cdmd&i=x&d=2020-05-13%2011:33:04 [69] 高永宝, 李侃, 钱兵, 等, 2015.东昆仑卡而却卡铜矿区花岗闪长岩及其暗色微粒包体成因:锆石U-Pb年龄、岩石地球化学及Sr-Nd-Hf同位素证据.中国地质, 42(3):646-662. doi: 10.3969/j.issn.1000-3657.2015.03.018 [70] 高永宝, 李文渊, 马晓光, 等, 2012.东昆仑尕林格铁矿床成因年代学及Hf同位素制约.兰州大学学报(自然科学版), 48(2):36-47. doi: 10.3969/j.issn.0455-2059.2012.02.007 [71] 刘成东, 莫宣学, 罗照华, 等, 2004.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据.科学通报, 49(6):596-600. doi: 10.3321/j.issn:0023-074X.2004.06.018 [72] 罗明非, 莫宣学, 喻学惠, 等, 2014.东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义.岩石学报, 30(11):3229-3241. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411010 [73] 罗照华, 柯珊, 曹永清, 等, 2002.东昆仑印支晚期幔源岩浆活动.地质通报, 21(6):292-297. doi: 10.3969/j.issn.1671-2552.2002.06.003 [74] 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010 [75] 秦拯纬, 马昌前, 付建明, 等, 2018.东昆仑香加花岗质岩体中镁铁质包体成因:岩相学及地球化学证据.地球科学, 43(7):2420-2437. http://d.old.wanfangdata.com.cn/Periodical/dqkx201807015 [76] 王德滋, 谢磊, 2008.岩浆混合作用:来自岩石包体的证据.高校地质学报, 14(1):16-21. doi: 10.3969/j.issn.1006-7493.2008.01.002 [77] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001 [78] 吴祥珂, 孟繁聪, 许虹, 等, 2011.青海祁漫塔格玛兴大坂晚三叠世花岗岩年代学、地球化学及Nd-Hf同位素组成.岩石学报, 27(11):3380-3394. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111018 [79] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [80] 熊富浩, 2014.东昆仑造山带东段古特提斯域花岗岩类时空分布、岩石成因及其地质意义(博士学位论文).武汉:中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014340842.htm [81] 许庆林, 孙丰月, 李碧乐, 等, 2014.东昆仑莫河下拉银多金属矿床花岗斑岩年代学、地球化学特征及其构造背景.大地构造与成矿学, 38(2):421-433. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201402021 [82] 许志琴, 崔军文, 张建新, 1996, 大陆山链变形构造动力学.北京:冶金工业出版社, 204-225. http://book.ixueshu.com/book/695ca3a64a0e97de.html [83] 许志琴, 姜枚, 杨经绥, 等, 2004.青藏高原的地幔结构:地幔羽、地幔剪切带及岩石圈俯冲板片的拆沉.地学前缘, 11(4):329-343. doi: 10.3321/j.issn:1005-2321.2004.04.001 [84] 杨堂礼, 蒋少涌, 2015.江西九瑞矿集区东雷湾矿区中酸性侵入岩及其铁镁质包体的成因:锆石U-Pb年代学、地球化学与Sr-Nd-Pb-Hf同位素制约.地球科学, 40(12):2002-2020. http://d.old.wanfangdata.com.cn/Periodical/dqkx201512005 [85] 张明东, 马昌前, 王连训, 等, 2018.后碰撞阶段的"俯冲型"岩浆岩:来自东昆仑瑙木浑沟晚三叠世闪长玢岩的证据.地球科学, 43(4):1183-1206. doi: 10.3799/dqkx.2018.715?viewType=HTML [86] 张炜, 周汉文, 朱云海, 等, 2016.东昆仑与成矿有关的三叠纪花岗岩演化:基于莫河下拉岩体岩石学、地球化学和锆石U-Pb年代学的证据.地球科学, 41(8):1334-1348. http://d.old.wanfangdata.com.cn/Periodical/dqkx201608007 [87] 朱玉娣, 叶锡芳, 张德会, 等, 2014.浙西开化桐村斑岩型Mo(Cu)矿床含矿斑岩岩石化学、SHRIMP锆石U-Pb年代学及Sr-Nd同位素研究.地学前缘, 21(4):221-234. http://d.old.wanfangdata.com.cn/Periodical/dxqy201404024 期刊类型引用(5)
1. 许智,夏楚林,韩芝弘,孙方余,魏密密. 东昆仑东段各玛龙闪长岩年代学、地球化学特征及成因分析. 地质科学. 2024(01): 65-81 . 百度学术
2. 韩芝弘,夏楚林,杜瑜,李生虎,张文昭,甄士坤,全长恩. 东昆仑东段益克郭勒铜多金属矿床花岗岩类锆石U-Pb年龄、地球化学特征及地质意义. 矿物岩石地球化学通报. 2023(01): 215-232 . 百度学术
3. 李治华,李碧乐,李鹏,孙亚明,史雨凡. 东昆仑黑石山铜多金属矿床闪长岩锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素. 地球科学. 2023(12): 4465-4480 . 本站查看
4. 封铿,李瑞保,裴先治,李佐臣,刘成军,裴磊,陈有炘,陈国超,杨再兵. 东昆仑造山带波洛斯太地区晚三叠世中酸性火山岩锆石U-Pb年代学、地球化学及地质意义. 地球科学. 2022(04): 1194-1216 . 本站查看
5. 菅坤坤,何元方,赵端昌,高峰,王星,袁璋. 东昆仑中段灶火沟花岗岩锆石U-Pb年代学、地球化学特征及其构造意义. 地球科学与环境学报. 2020(05): 603-621 . 百度学术
其他类型引用(1)
-
dqkx-45-4-1151.xml-Table1-2.pdf
-