MMEs in the Tangjiangqiongguo Pluton in the North Lhasa Block Formed by Magma Mixing of Different Episodes of the Same Sourced Magma: A New Petrogenetic Model for the MMEs
-
摘要: 在西藏北拉萨块体中段唐江穷果岩体中发现了一种新的岩石成因的暗色包体.唐江穷果岩体中暗色包体呈椭球状,与寄主岩之间呈不紧密胶结,在暗色包体和寄主岩的接触面上通常形成一个明显的风化间隙面.暗色包体为角闪闪长斑岩,寄主岩为花岗闪长岩,暗色包体明显较寄主岩更基性,更富Na2O、CaO、MgO和Fe2O3T.暗色包体和寄主岩具有明显不同的稀土元素,暗色包体的稀土元素除La、Ce元素外,整体含量较寄主岩高,且轻重稀土分异弱.两者都具有弧岩浆岩的特征,富集Rb、Cs、K等大离子亲石元素和Th、U,而亏损Nb、Ta、Ti等高场强元素.暗色包体成岩年龄为113.9±1.0 Ma,寄主岩的成岩年龄为110±1.1 Ma,暗色包体成岩年龄较寄主岩早约4 Ma.此外,两者具有一致的锆石原位Lu-Hf同位素特征.以上岩相学、年代学、元素地球化学和同位素地球化学证据表明,唐江穷果暗色包体和寄主岩来源于同源母岩浆,暗色包体在二次岩浆房中经历了较弱的斜长石结晶分离作用,寄主岩在二次岩浆房中经历了较强的角闪石结晶分离作用.经过结晶分离作用的寄主岩岩浆在侵位过程中将较早形成处于半塑性状态下的暗色包体裹挟至近地表.唐江穷果暗色包体最可能的成因模式可以解释为同源岩浆不同期次间的物理混合.Abstract: This paper proposes a new petrogenetic model for the MMEs (mafic microgranular enclaves) based on a study on the Tangjiangqiongguo pluton in the middle part of the North Lhasa Block,Tibet. The MMEs found in the Tangjiangqiongguo host granitic diorites are hornblende diorites usually presenting axiolite and non-compactly cement with the host rock,with an apparent clearance plane with host rocks. The MMEs have higher Na2O,CaO,MgO and Fe2O3T contents than the host rocks. The MMEs have distinct REE characteristics from host rocks,with higher REE contents (except La and Ce) and weaker fractionation between LREE and HREE. Both the MMEs and host rocks show characteristics of arc rocks with enrichment in LILEs (large ion lithophile elements) Rb,Cs,K,etc.,and Th and U elements,but depletion in HFSEs (high field strength elements) Nb,Ta and Ti elements. Zircon LA-ICP-MS U-Pb dating yields a 113.9±1.0 Ma age and a 110±1.1 Ma age for the MMEs and host rocks,respectively. Although the MMEs are 4 Ma earlier than the host rocks,they have consistent zircon Lu-Hf isotopes. Synthesizing above petrography,geochemistry and isotopic evidence,we suggest the MMEs are derived from the same source rocks with host rocks. The MMEs experienced a weak plagioclase fractional crystallization,but the host rocks experienced a relatively strong hornblende fractional crystallization in respective secondary magma chamber. The differential magma of the host rock wrapped and carried the earlier formed MMEs (in semiplastic) to subsurface. The most probable petrogenetic model for the Tangjiangqiongguo MMEs mingling between magmas of different periods sourced from the same rock.
-
Key words:
- North Lhasa Block /
- mafic microgranular enclaves /
- zircon U-Pb dating /
- geochemistry /
- Lu-Hf isotopes /
- petrogenesis
-
0. 引言
暗色微粒包体又称镁铁质微粒包体(mafic microgranular enclaves, 缩写为MMEs),在中酸性岩浆中普遍存在,它们携带着丰富的地球深部动力学信息,是探索岩浆作用的深部过程以及了解寄主岩岩浆起源、定位机制与成因演化的理想研究对象(Didier and Barbarin, 1991; Barbarin, 2005; Kumar and Rino, 2006; Słaby and Martin, 2008).目前公认的暗色包体有如下几种成因机制:(1)暗色包体来自花岗岩原岩熔融留下来的耐火残留体(Chappell et al., 1987; Chen et al., 1989; Chappel and White, 1992; White et al., 1999);(2)同源岩浆早阶段的析离体(Chappell et al., 1987; Dahlquist, 2002; Donaire et al., 2005; Shellnutt et al., 2010);(3)围岩捕掳体(Dahlquist, 2002; Donaire et al., 2005);(4)注入长英质岩浆中的镁铁质岩浆固结而成(Vernon, 1984; Dorais et al., 1990; Chen et al., 2009; Liu et al., 2013;杨堂礼和蒋少涌,2015).自然界中是否还存在着不同于以上成因机制产生的暗色包体,仍是值得探索和研究的科学问题.笔者对西藏北拉萨块体中段雄梅地区早白垩世唐江穷果花岗闪长岩及其包含的暗色包体开展了系统的岩相学观察、锆石U-Pb定年、岩石地球化学以及锆石原位Lu-Hf同位素分析,发现唐江穷果岩体中的暗色包体的成因不能用以上成因机制予以解释,它们最可能的成因为同源岩浆不同期次之间的混合,这对丰富暗色包体的成因和探索岩浆作用的深部过程具有重要的科学意义.
1. 地质背景及唐江穷果岩体的岩相学特征
青藏高原自南向北依次可以划分为喜马拉雅地体、拉萨地体和羌塘地体,3个地体的界线分别是雅鲁藏布江缝合带和班公湖-怒江缝合带(Zhang, 2004; Shi et al., 2008; Zhang et al., 2012, 2014, 2017; Sun et al., 2018; Dong et al., 2019).其中拉萨地体一般分为北、中、南3个地块,分别被狮泉河-纳木错蛇绿混杂岩带和洛巴堆-米拉山断裂带分隔(图 1a)(Zhu et al., 2013;孙渺等,2018),一般认为,南部拉萨地块以新生地壳为特征(Zhu et al., 2011; Li et al., 2019),中部地块由于发育新元古代奥长花岗岩和变质岩(Hu, 2005; Dong et al., 2011),以及Zhu et al.(2011)根据代表岩浆侵位年龄的锆石显示非常负的锆石εHf(t)值,认为中部拉萨地体可能是一个以元古代甚至太古宙为基底的条带状微陆块.北拉萨地体可能是发育多期岩浆作用的新生地壳(朱弟成等, 2012),包括早白垩世石英闪长岩、英云闪长岩、花岗闪长岩,晚白垩世二长花岗岩、钾长花岗岩,始新世正长花岗岩、浅成的流纹斑岩等.在北拉萨块体中段雄梅地区出露的地层从老至新主要有达尔东组(D1d)、查果罗玛组(D1C1c)、永珠组(C1-2y)、接奴群(J2-3J)、日拉组(J3K1r)、则弄群(K1Z)和多尼组(K1d)等(曲永贵等,2002).与唐江穷果岩体同期的早白垩世岩浆岩形成于与班公湖-怒江板片俯冲断离相关的一套后碰撞岩浆岩,岩石的热源来自于板片断离引起的软流圈上涌,源区主要来自于北拉萨块体的熔融及部分地幔物质(Zhu et al., 2011;张亮亮等, 2011).
唐江穷果岩体位于北拉萨块体中段的雄梅地区,在班戈县西南60 km处.岩体形态呈倒卧“L”,长边近东西展布,长约10 km,短边近南北向展布,长约8 km.单元岩体侵入于下泥盆统达尔东组(D1d)、下泥盆统-下石炭统查果罗玛组(D1C1c)、上-下石炭统永珠组(C1-2y)和晚侏罗世日拉组(J3K1r)中(图 1b).岩石普遍具有高岭土化、褐铁矿化蚀变.岩体内节理、脉岩较发育,脉岩以酸性岩脉为主,宽度从几厘米至几十厘米不等,分布无规律.岩体内普遍含暗色闪长质包体,形状多为椭球状,大小一般在几厘米到几十厘米.此外,紧邻唐江穷果岩体南侧出露一套晚白垩世的二长花岗岩,在岩体西南方向还出露有一套晚白垩世江巴组火山岩和以辉橄岩为主的永珠蛇绿岩(曲永贵等,2002).
唐江穷果岩体呈半自形中细粒花岗结构,块状构造(图 2a).矿物成分由斜长石、钾长石、石英、黑云母及少量的角闪石组成.斜长石自形程度好,呈板状、柱状,粒度介于1~3 mm,聚片双晶发育,有的具环带结构,含量约55%;钾长石呈他形粒状,表面粘土化,具条纹结构,粒度1~3 mm,含量约10%;石英呈他形粒状,粒度1~3 mm,含量约20%;黑云母呈半自形-自形,长条状,棕褐色-黄褐色多色性,粒度1~2 mm,含量约占10%,个别见绿泥石化;普通角闪石自形程度较好,绿色-棕黄色多色性,具吸收性,粒度1~2 mm,含量约5%(图 2d),综合以上矿物的成分和含量,唐江穷果岩体的寄主岩为花岗闪长岩.
暗色包体呈灰黑色,呈椭球状,大小介于几厘米到几十厘米,暗色包体与寄主岩之间胶结不紧密,通常在暗色包体和寄主岩的接触面上形成一个风化间隙面,甚至在有的间隙面上有植被发育(图 2b, 2c).暗色包体呈斑状结构,块状构造.斑晶主要为斜长石(约5%)和极少量的角闪石(图 2e~2g).斜长石斑晶自形程度好,粒度介于1~3 mm,有的斑晶具环带结构,斜长石斑晶中常包裹有角闪石和黑云母等暗色矿物(图 2e, 2f).角闪石斑晶较为少见,自形程度好,粒度介于1~2 mm(图 2g).基质在高倍镜(100倍)下鉴定矿物颗粒多小于0.2 mm,属于微粒结构,主要由斜长石(约55%)、钾长石(约5%)、石英(约5%)、角闪石(约30%)、黑云母5%组成(图 2h),矿物学成分类似于角闪闪长岩.另外,可见针状磷灰石,长度一般小于0.1 mm,含量较少可以忽略不计(图 2i).
2. 分析方法
2.1 锆石U-Pb定年
锆石的分选在河北廊坊欣航测绘院完成.锆石U-Pb同位素定年选取新鲜的全岩样品.样品粉碎后,经磁分选和重液分离出单颗粒锆石,然后在双目镜下手工挑选出颗粒较大、晶形完好的锆石制靶,经透射光、反射光及阴极发光(CL)研究之后,对选定的锆石颗粒进行了LA-ICP-MS锆石U-Pb定年.
锆石LA-ICP-MS测试在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成,分析测试仪器为Agilent 7500a,激光剥蚀系统为Geolas 2005,分析利用激光斑束直径为32 μm,剥蚀深度为20~40 μm.采用标准锆石91500(约1 064 Ma)作为校正外标,GJ-1(约599 Ma)作为监控样,以合成硅酸岩玻璃NIST610标示仪器的运行状态,以29Si为内标校正锆石微量元素含量.对分析数据的离线处理(样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算等)采用ICPMSDataCal 9.0软件完成,详细的仪器操作条件与数据处理方法见Liu et al.(2010).年龄结果处理(包括谐和图的绘制与加权平均年龄计算等)利用Isoplot 3.0软件完成(Ludwig, 2003).
2.2 岩石地球化学测试
主量、微量元素分析在广州澳实矿物实验室进行.主量元素采用碱熔法制成玻璃饼,测试采用X射线荧光光谱法(XRF),在荷兰帕纳科Axios X荧光仪完成,分析误差优于3%.微量元素测定采用电感耦合等离子体质谱法(ICP-MS),将样品研磨并用酸溶法(HF+HNO3)制成溶液,然后在NexIon 300x ICP-MS等离子质谱仪上进行测定,测试中采用标准样品对仪器状态和数据质量进行监控,含量大于10×10-6的元素分析误差小于5%,而含量小于10×10-6的元素误差小于10%.
2.3 锆石原位Lu-Hf同位素测试
锆石Hf同位素测试是在中国地质科学院地质研究所大陆构造与动力学实验室完成,所用仪器为Neptune Plus多接收等离子质谱和Compex pro.193nm紫外激光剥蚀系统(LA-MC-ICP-MS),实验过程中采用He作为剥蚀物质载气,剥蚀直径采用32 μm,测定时使用国际上通用的锆石标样GJ-1作为参考物质,分析点与U-Pb定年分析点为同一位置.相关仪器运行条件及详细分析流程见侯可军等(2007).分析过程中锆石标准GJ-1的176Hf/177Hf测试加权平均值为0.282 015±0.000 008(2σ,n=10),与文献报道值(Elhlou et al., 2006;侯可军等, 2007)在误差范围内完全一致.
3. 实验结果
3.1 锆石U-Pb定年
寄主花岗闪长岩中锆石呈灰白色,半透明,大部分呈短柱状-长柱状,半自形-自形,长轴为30~150 μm,长短轴比介于1:1~1:3(图 3a),阴极发光图像显示出较清晰的振荡环带;暗色包体中锆石呈灰黑色,为锆石里面所含灰黑色杂质所致,半透明-不透明,短柱状-长柱状,晶体自形程度良好,长轴为40~120 μm,长短轴比介于1:1~1:3(图 3b),阴极发光图像显示出较清晰的振荡环带.寄主花岗闪长岩和闪长岩包体均具有较高的Th/U比值,介于0.39~0.89,清晰的岩浆锆石振荡环带和较高的Th/U比值说明寄主花岗岩和闪长质的暗色包体中的锆石均为岩浆锆石.
寄主闪长岩的有效测试点14个,年龄介于106.5~113.4 Ma,加权平均年龄为110± 1.1 Ma(图 3a);闪长岩暗色包体有效测试点16个,年龄介于111.0~116.6 Ma,加权平均年龄113.9±1.0 Ma(图 3 b),暗色包体的年龄较寄主岩早了近4 Ma (附表 1).
3.2 主、微量元素
唐江穷果岩体及暗色包体主、微量元素数据见附表 2.
唐江穷果岩体寄主岩的SiO2含量介于64.54%~67.00%,处于中性-酸性岩界限的附近(SiO2=66%),暗色包体的SiO2含量介于58.57%~59.96%,属于中性岩.寄主岩和暗色包体具有相对高的Na2O含量,寄主岩的Na2O含量介于3.65%~3.84%,暗色包体的Na2O介于4.25%~4.53%.二者的K2O含量相对较低,其中寄主岩的K2O介于2.49%~2.88%,暗色包体的K2O介于1.78%~2.06%.寄主岩和暗色包体中的K2O均较Na2O含量低,二者的K/Na值均低于1,其中寄主岩的K/Na介于0.64~0.75,暗色包体的K/Na介于0.39~0.48.在SiO2-ALK侵入岩定名图解上,寄主岩投入到石英闪长岩/花岗闪长岩的范围(图 4a),结合薄片中矿物显微观察结果,综合定名为花岗闪长岩;暗色包体投图到闪长岩的范围(图 4a),结合岩相学观察的结果综合定名为角闪闪长岩.在SiO2-K2O图解上,除寄主花岗闪长岩TJ16-06样品投图到高钾钙碱性范围,其他样品均投到钙碱性范围内,寄主岩和暗色包体整体呈钙碱性(图 4b).寄主岩和暗色包体A/CNK值介于0.82到0.99,为准铝质(图 4c).寄主花岗闪长岩和暗色包体具有较高的Mg#值,介于47~57,指示岩浆作用过程中有地幔物质的参与(图 4d).
图 4 唐江穷果岩体及暗色包体SiO2 vs. ALK图解(a),SiO2 vs. K2O(b), A/CNK vs. A/NK图解(c)及SiO2 vs. Mg#(d)图a据Middlemost (1994);图b据Peccerillo and Taylor (1976);图c据Maniar and Piccoli (1989);图d据Jiang et al. (2010)及文内参考文献Fig. 4. Total alkali vs. silica (TAS) diagram (a), SiO2 vs. K2O diagram (b), A/CNK vs. A/NK diagram (c) and SiO2 vs. Mg# (d) of Tangjiangqiongguo pluton and MMEs唐江穷果岩体寄主岩和暗色包体样品的SiO2含量变化都小,但各元素含量及元素对的比值与SiO2变化趋势明显.在Harker图解中,寄主岩的Al3O2、CaO、MgO、Fe2O3T、Eu、(La/Yb)N、(La/Sm)N、(Tb/Yb)N与SiO2呈明显的负相关关系(图 5a, 5d~5f, 5h~5j).暗色包体的Na2O、CaO、Fe2O3T、MnO、Eu及(Tb/Yb)N与SiO2呈明显的负相关关系(图 5c, 5d, 5f, 5g, 5h, 5k),而K2O、(La/Yb)N及(La/Sm)N与SiO2呈明显的正相关关系(图 5b, 5i, 5j),MgO几乎不随SiO2变化(图 5e).虽然暗色包体和寄主岩各自内部有着良好的演化趋势,但整体上暗色包体与寄主岩之间不存在明显的演化趋势(图 5b, 5c, 5e~5g, 5i~5k),指示暗色包体和寄主岩之间不存在明显连续的演化关系.在La-(La/Yb)N分离结晶和部分熔融判别图解上,在寄主岩和暗色包体内部各元素或元素对的比值随SiO2变化可能主要受控于岩浆的结晶分异作用(图 5l).
在稀土元素配分图解上,唐江穷果寄主岩显示轻稀土元素富集,重稀土元素亏损的右倾模式,Eu呈弱的负异常(图 6a),(La/Yb)N值介于7.8~10.7,Eu/Eu*介于0.60~0.76;暗色包体的稀土元素较寄主花岗岩有明显区别,除La、Ce的含量与寄主岩体相当外,其他稀土元素均较寄主岩体的高,且轻、重稀土分馏较弱,稀土元素配分图较为平坦,Eu呈明显的负异常(图 6a),(La/Yb)N值介于2.64~4.00,Eu/Eu*介于0.36~0.53.唐江穷果寄主岩和暗色包体的微量元素具有典型的弧岩浆岩的特征,富集Rb、Cs、K等大离子亲石元素和Th、U,亏损Nb、Ta、Ti等高场强元素,此外,暗色包体较寄主岩具有明显的Sr的负异常.
图 6 唐江穷果岩体及暗色包体稀土元素配分(a)和微量元素(b)蛛网图球粒陨石和元素地幔标准化数据据Sun and Mcdonough(1989)Fig. 6. Chondrite-normalized REE diagram (a) and primitive mantle-normalized trace element diagram (b) of the Tangjiangqiongguo pluton and MMEs3.3 锆石Hf同位素
锆石原位Hf同位素分析结果见附表 3,由表可见寄主闪长岩的176Yb/177Hf、176Lu/177Hf、176Hf/177Hf值分别介于0.025 636~0.061 885、0.000 752~0.001 786和0.282 602~0.282 683,根据原位锆石的实际年龄计算,获得Hf同位素初始比值εHf(t)介于-3.69~0.91,概率直方图峰值约为-2.8(图 7a),采用平均地壳176Lu/177Hf值计算(Griffin et al., 2000),获得Hf同位素二阶段模式年龄TDM2为1.22~1.40 Ga,概率直方图峰值约为1.36 Ga(图 7b).暗色包体的176Yb/177Hf、176Lu/177Hf、176Hf/177Hf值分别介于0.023 684~0.066 534、0.000 752~0.002 028和0.282 572~0.282 744,根据原位锆石的实际年龄计算,获得Hf同位素初始比值εHf(t)介于-4.70~1.34,概率直方图峰值约为-2.2(图 7c),采用平均地壳176Lu/177Hf值计算(Griffin et al., 2000),获得Hf同位素二阶段模式年龄TDM2为1.09~1.47 Ga,概率直方图峰值约为1.30 Ga(图 7d).寄主闪长岩和暗色包体在误差范围内几乎具有一致的Lu-Hf同位素特征.
4. 讨论
4.1 暗色包体的成因模式
唐江穷果岩体中暗色包体的成因与目前现有的机制(见上文)都不相同,表现在:
(1) 残留体模式形成的暗色包体,一般残留体的年龄明显要较寄主岩老,而唐江穷果包体的年龄仅比寄主岩早约4 Ma(图 3a, 3b,附表 1),它们应该属于同一个岩浆事件的产物,而非源区与熔融岩浆的关系.另外,在一般的残留体模式中,暗色包体经历过部分熔融作用后里面暗色矿物会定向排列,呈现残留堆晶结构(Chappell et al., 1987, 2000; White et al., 1999),这与唐江穷果包体薄片镜下观察到的斑状结构不符合(图 2e~2i).并且,在该模式下,熔融岩浆(寄主岩)的稀土元素会明显高于暗色包体的,因为稀土元素整体属于不相容元素,倾向在液相中富集,这与本文的地球化学数据不一致(图 6a).因此,唐江穷果包体的岩石成因应不同于残留体的暗色包体.
(2) 从成岩年龄上讲(图 3,附表 1),唐江穷果包体似乎符合同源岩浆早阶段的析离体模式,暗色包体与寄主岩同时,或略早于寄主岩.但与残留体模式类似,同源岩浆早阶段的析离体一般也会有暗色矿物会定向排列,呈现堆积结构,这与唐江穷果暗色包体的矿物结构不一致.而且,早阶段形成的析离体矿物结晶程度好,矿物颗粒均匀,这也与暗色包体的斑状结构不一致.同样,在早阶段的析离体模式中,稀土元素属于不相容元素,优先进入液相中,而非早期结晶矿物,暗色包体的稀土元素应该较寄主岩的低,这也与唐江穷果暗色包体稀土元素测试结果不一致(图 6a),因此唐江穷果暗色包体也不属于早期析离体.
(3) 唐江穷果暗色包体也不是围岩捕掳体.一般岩浆在上升侵位过程中容易捕掳围岩地层的碎块,这些碎块一般呈不规则的块状,而且围岩地层一般远早于岩浆上侵结晶的年龄(图 1b),这些明显不同于唐江穷果包体的特征.而且,寄主岩和暗色包体一致的锆石原位Hf同位素特征也指示它们应该属于同源岩浆,而非不同来源的捕掳体.
(4) 在岩浆作用过程中越来越多岩浆混合型的暗色包体被发现,这种类型的暗色包体是指一种更基性更富铁镁质的岩浆注入到中酸性岩浆中的产物.岩浆混合形成的暗色包体在反映壳-幔混合、反演岩浆深部作用中起到了重要的作用.但唐江穷果包体似乎也与该类型的包体不一致.首先,岩浆混合型的暗色包体与寄主岩形成的温度都较高,岩浆熔体的流变性好,包体一般呈球状、椭球状,暗色包体甚至可以发生拉伸、流动构造,而且两种流变性好的岩浆在冷却结晶过程中可以很牢固地胶结在一起.这些特点均与唐江穷果包体不甚规则的边部和与围岩之间明显间隙面特点都不一致.其次,岩浆混合作用中暗色包体作为同期或稍后期的岩浆注入到较早的岩浆中,暗色包体的年龄与寄主岩同期或稍晚于寄主岩.而唐江穷果包体却较寄主岩早4 Ma(图 3,附表 1),并且笔者认为在同一实验室同一台质谱仪同一时间段内连续两个样品年龄测量结果的外部误差可以最小化,样品间的年龄差是可靠的.
暗色包体和寄主岩体之间的化学扩散作用会改变暗色包体的地球化学成分(Baker, 1989; Holden et al., 1991; Lesher, 1994),但一般也很难评估地球化学扩散作用发生的位置和对暗色包体化学成分的改变程度,也有学者认为在较大的暗色包体中心部分不受到寄主岩化学扩散作用的影响(Didier, 1987; Jiang et al., 2005).对于唐江穷果暗色包体,根据野外暗色包体的形态及与寄主岩的接触关系,它们可能是在半塑性状态下被寄主岩包裹,这样的物化条件下、暗色包体的地球化学组成可能已经处于封闭状态,很难与寄主岩发生化学扩散作用.另外,实验地球化学数据表明碱金属元素(K、Na)的化学扩散作用要明显快于其他化学组分(Johnston and Wyllie, 1988),因此如果暗色包体和寄主岩之间发生了化学扩散作用,碱金属元素会优先达到化学平衡状态,而唐江穷果暗色包体与寄主岩之间的K2O、Na2O含量不同且无线性演化关系(图 5b, 5c),可以判断唐江穷果暗色包体和寄主岩之间不存在化学扩散作用.暗色包体与寄主岩的一致锆石原位Hf同位素组成不是由于化学扩散作用造成的,进而指示它们属于同源岩浆.
综合以上岩相学、地球化学、同位素证据,唐江穷果暗色包体的成因与以上几种暗色包体成因均不一致.相近的锆石年龄和一致的锆石原位Lu-Hf同位素结果表明,暗色包体和寄主岩应该属于同源岩浆,暗色包体的结晶年龄略早于寄主岩.从暗色包体的野外特征,如凹凸不平的边界,唐江穷果暗色包体最可能的成因模式为同源岩浆早阶段抽离形成的岩浆在半塑性状态下被晚阶段抽离的岩浆所裹挟,一起侵入到近地表.
4.2 岩浆的演化
相近的锆石U-Pb年龄和一致的Lu-Hf同位素组成指示暗色包体和寄主岩来源于同源岩浆.但它们却具有明显不同的主、微量元素含量,暗色包体更偏基性,更富CaO、MgO、Fe2O3T和Na2O,而贫K2O.在Harker图解上,暗色包体和寄主岩具有明显不同的演化趋势(图 5b, 5c, 5e~5g, 5i~5k),说明它们之间并无演化关系.但暗色包体(图 5a~5k)和寄主岩(图 5d~5f, 5h~5j)各样品间却显示较好的演化趋势,说明暗色包体和寄主分别经历了各自不同的岩浆演化.在(La/Sm)N/La岩浆分离结晶和部分熔融判别图解上(图 5l),暗色包体和寄主岩演化主要受控于结晶分离作用.
岩相学观察结果表明,暗色包体为角闪闪长斑岩,斑晶为斜长石(约5%)和极少量的角闪石,基质主要为微粒的斜长石(约55%)、角闪石(约30%)、钾长石(约5%)和黑云母(约5%).少量的斜长石斑晶说明暗色包体只经历了较弱的斜长石分离结晶作用,暗色包体受分离结晶作用小,地球化学组成接近母岩浆.相对暗色包体,寄主岩角闪石含量明显降低,为5%左右,说明寄主岩在母岩浆经历了较强的角闪石结晶分离作用.在Sr/Ba和Rb/Ba矿物结晶分离判别图解上,暗色包体显示明显的角闪结晶分离趋势,寄主岩显示明显的斜长石结晶分离趋势,与岩相学观察结果一致(图 8).
由于稀土元素为不相容元素,随着岩浆的演化,岩体酸性程度越高稀土元素含量越高.在本文中,暗色包体基性程度高,稀土元素含量反而较寄主岩的高(图 6a),这种特殊现象也是主要受控于岩浆中矿物结晶作用.在安山质和英安质岩浆中,稀土元素在斜长石和熔体间的分配系数均小于1,除Eu元素外,其他稀土元素的分配系数都在0.1左右(图 9a),稀土元素优先进入熔体相;而稀土元素在角闪石和熔体间的分配系数,除Ce以外均大于1,介于2.89~6.20(图 9a),稀土元素优先进入角闪石中.在瑞利分离结晶模型中(图 9b),分配系数小的矿物较弱的分离结晶作用几乎不改变母岩浆的地球化学组成(图 9b中绿色虚线,约5%的斜长分离结晶据暗色包体薄片中斜长石斑晶含量估计),因此较弱的斜长石分离结晶作用几乎不改变母岩浆的稀土元素含量,暗色包体的稀土元素可以代表母岩浆的稀土元素组成.在瑞利分离结晶模型中(图 9b),分配系数大的矿物分离结晶作用可以明显改变母岩浆的地球化学组成(图 9b中红色虚线约25%的角闪石分离结晶据暗色包体基质-寄主岩薄片中角闪石减少的量估算),寄主岩经历明显的角闪石分离结晶作用,母岩浆中稀土元素优先进入分离结晶的角闪石中,而造成熔体中稀土元素的普遍较低.由于Ce在角闪石和熔体间的分配系数接近1,几乎不受分离结晶作用影响,因此寄主岩中Ce的含量几乎和暗色包体一致.
图 9 REE在斜长石(安山岩中)和角闪石(英安岩中)与熔体间的分配系数(a)和瑞利结晶分离作用模型(b)图a中REE在斜长石与熔体间的分配系数据Fujimaki et al.(1984),La为0.302,Ce为0.221,Nd为0.149,Sm为0.102,Eu为1.214,Gd为0.067,Dy为0.050,Er为0.045,Yb为0.041,Lu为0.039;REE在角闪石与熔体间分配系数据Giraud et al.(1986),Ce为0.899,Nd为2.89,Sm为3.99,Eu为3.44,Gd为5.48,Dy为6.20,Er为5.94,Yb为4.89,Lu为4.53;图b中CL为熔体中稀土元素含量;Co为结晶分离过程中母岩浆中稀土元素含量;F为结晶分离过程中液相的含量;D为分配系数Fig. 9. Distribution coefficients of the plagioclase/melt (in andesite) and the amphibole/melt (in dacite) (a) and Rayleigh fractional crystallization model (b)在暗色微粒包体中针状磷灰石普遍存在,前人普遍认为这种矿物学标志代表了高温岩浆注入到较低温度岩浆中发生了快速冷凝淬火作用,可以作为岩浆混合的矿物学标志(Baxter and Feely, 2002).然而,唐江穷果暗色包体显然不是典型的岩浆混合作用形成的,但在暗色包体中仍发现有针状磷灰石,因此笔者认为针状磷灰石仅代表岩浆经历了快速冷凝过程,这也符合暗色包体为斑状结构的基本事实.在其他侵位较浅经历快速冷凝的岩石中也存在针状磷灰石(基性岩墙),如果后期的岩浆作用将早期形成的含有针状磷灰石快速冷凝的岩石捕掳,显然这样的针状磷灰石就不能当做岩浆混合的矿物学标志.
综合以上岩相学、地球化学证据,暗色包体和寄主岩来源于共同的母岩浆,只是在不同层位二次岩浆房中经历不同矿物的结晶分离作用.最有可能的解释是暗色包体的二次岩浆房从母岩浆中分离、侵位到一个相对较浅的层位,并在二次岩浆房中经历较弱的斜长石结晶分离作用;而寄主岩的二次岩浆房(体量大)从母岩浆中分离、侵位到一个相对较低的层位,并经历了较强的角闪石分离结晶作用,经历过角闪石分离结晶作用的寄主岩熔体在进一步侵位过程中将之前形成的(早4 Ma)处于半塑性状态下的暗色包体熔体包裹、携带至近地表(图 10).
5. 结论
(1) 唐江穷果暗色包体最可能的成因模式为同源岩浆早阶段抽离形成的岩浆在半塑性状态下被晚阶段抽离的岩浆所裹挟一起侵入到近地表,为一种新的暗色包体成岩模式.
(2) 结晶分离作用在唐江穷果岩体和暗色包体成岩过程中起主要的作用,其中暗色包体在二次岩浆房经历较弱的斜长石结晶分离作用,而寄主岩在二次岩浆房中经历了较强的角闪石分离结晶作用.
致谢
感谢编辑同志及时高效的送审,感谢两位匿名审稿人耐心细致的审阅,以及提出的宝贵修改意见,这对论文的提高和发表起到了至关重要的作用!
附表见本刊官网(http://www.earth-science.net).
-
图 1 青藏高原构造单元划分(a)和唐江穷果岩体地质简图(b)
图a据Zhang et al.(2012)、Zhu et al.(2012)修改;图b据曲永贵等(2002)修改
Fig. 1. Tectonic units of the Tibet (a) and geologic map of the Tangjiangqiongguo pluton (b)
图 4 唐江穷果岩体及暗色包体SiO2 vs. ALK图解(a),SiO2 vs. K2O(b), A/CNK vs. A/NK图解(c)及SiO2 vs. Mg#(d)
图a据Middlemost (1994);图b据Peccerillo and Taylor (1976);图c据Maniar and Piccoli (1989);图d据Jiang et al. (2010)及文内参考文献
Fig. 4. Total alkali vs. silica (TAS) diagram (a), SiO2 vs. K2O diagram (b), A/CNK vs. A/NK diagram (c) and SiO2 vs. Mg# (d) of Tangjiangqiongguo pluton and MMEs
图 6 唐江穷果岩体及暗色包体稀土元素配分(a)和微量元素(b)蛛网图
球粒陨石和元素地幔标准化数据据Sun and Mcdonough(1989)
Fig. 6. Chondrite-normalized REE diagram (a) and primitive mantle-normalized trace element diagram (b) of the Tangjiangqiongguo pluton and MMEs
图 9 REE在斜长石(安山岩中)和角闪石(英安岩中)与熔体间的分配系数(a)和瑞利结晶分离作用模型(b)
图a中REE在斜长石与熔体间的分配系数据Fujimaki et al.(1984),La为0.302,Ce为0.221,Nd为0.149,Sm为0.102,Eu为1.214,Gd为0.067,Dy为0.050,Er为0.045,Yb为0.041,Lu为0.039;REE在角闪石与熔体间分配系数据Giraud et al.(1986),Ce为0.899,Nd为2.89,Sm为3.99,Eu为3.44,Gd为5.48,Dy为6.20,Er为5.94,Yb为4.89,Lu为4.53;图b中CL为熔体中稀土元素含量;Co为结晶分离过程中母岩浆中稀土元素含量;F为结晶分离过程中液相的含量;D为分配系数
Fig. 9. Distribution coefficients of the plagioclase/melt (in andesite) and the amphibole/melt (in dacite) (a) and Rayleigh fractional crystallization model (b)
-
[1] Baker, D. R., 1989. Tracer Versus Trace Element Diffusion: Diffusional Decoupling of Sr Concentration from Sr Isotope Composition. Geochimica et Cosmochimica Acta, 53(11): 3015-3023. https://doi.org/10.1016/0016-7037(89)90177-4 [2] Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos, 80(1-4): 155-177. https://doi.org/10.1016/j.lithos.2004.05.010 [3] Baxter, S., Feely, M., 2002. Magma Mixing and Mingling Textures in Granitoids: Examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology, 76(1-2): 63-74. https://doi.org/10.1007/s007100200032 [4] Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. https://doi.org/10.1016/s0012-821x(97)00040-x [5] Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1-26. https://doi.org/10.1017/s0263593300007720 [6] Chappell, B. W., White, A. J. R., Williams, I. S., et al., 2000. Lachlan Fold Belt Granites Revisited: High‐ and Low‐Temperature Granites and Their Implications. Australian Journal of Earth Sciences, 47(1): 123-138. https://doi.org/10.1046/j.1440-0952.2000.00766.x [7] Chappell, B. W., White, A. J. R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6): 1111-1138. https://doi.org/10.1093/petrology/28.6.1111 [8] Chen, Y. D., Price, R. C., White, A. J. R., 1989. Inclusions in Three S-Type Granites from Southeastern Australia. Journal of Petrology, 30(5): 1181-1218. https://doi.org/10.1093/petrology/30.5.1181 [9] Chen, B., Chen, Z. C., Jahn, B. M., 2009. Origin of Mafic Enclaves from the Taihang Mesozoic Orogen, North China Craton. Lithos, 110(1-4): 343-358. https://doi.org/10.1016/j.lithos.2009.01.015 [10] Dahlquist, J. A., 2002. Mafic Microgranular Enclaves: Early Segregation from Metaluminous Magma (Sierra de Chepes), Pampean Ranges, NW Argentina. Journal of South American Earth Sciences, 15(6): 643-655. https://doi.org/10.1016/s0895-9811(02)00112-8 [11] Didier, J., 1987. Contribution of Enclave Studies to the Understanding of Origin and Evolution of Granitic Magmas. Geologische Rundschau, 76(1): 41-50. https://doi.org/10.1007/bf01820572 [12] Didier, J., Barbarin, B., 1991. Enclaves and Granite Petrology. Developments in Petrology. Elsevier Science Publishers, Amsterdam. [13] Donaire, T., Pascual, E., Pin, C., et al., 2005. Microgranular Enclaves as Evidence of Rapid Cooling in Granitoid Rocks: The Case of the Los Pedroches Granodiorite, Iberian Massif, Spain. Contributions to Mineralogy and Petrology, 149(3): 247-265. https://doi.org/10.1007/s00410-005-0652-0 [14] Dong, H.W., Meng, Y.K., Xu, Z.Q., et al., 2019. Timing of Displacement along the YardoiDetachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar-39Ar Geochronology. Journal of Earth Science, 30(3): 535-548. https://doi.org/10.1007/s12583-019-1223-z [15] Dong, X., Zhang, Z. M., Santosh, M., et al., 2011. Late Neoproterozoic Thermal Events in the Northern Lhasa Terrane, South Tibet: Zircon Chronology and Tectonic Implications. Journal of Geodynamics, 52(5): 389-405. https://doi.org/10.1016/j.jog.2011.05.002 [16] Dorais, M. J., Whitney, J. A., Roden, M. F., 1990. Origin of Mafic Enclaves in the Dinkey Creek Pluton, Central Sierra Nevada Batholith, California. Journal of Petrology, 31(4): 853-881. https://doi.org/10.1093/petrology/31.4.853 [17] Elhlou, S., Belousova, E., Griffin, W. L., et al., 2006. Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation. Geochimica et Cosmochimica Acta, 70(18): A158. https://doi.org/10.1016/j.gca.2006.06.1383 [18] Fujimaki, H., Tatsumoto, M., Aoki, K. I., 1984. Partition Coefficients of Hf, Zr, and REE between Phenocrysts and Groundmasses. Journal of Geophysical Research, 89(S02):B662. https://doi.org/10.1029/jb089is02p0b662 [19] Giraud, A., Dupuy, C., Dostal, J., 1986. Behaviour of Trace Elements during Magmatic Processes in the Crust: Application to Acidic Volcanic Rocks of Tuscany (Italy). Chemical Geology, 57(3-4): 269-288. https://doi.org/10.1016/0009-2541(86)90054-9 [20] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 [21] Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4): 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 [22] Holden, P., Halliday, A. N., Ed Stephens, W., et al., 1991. Chemical and Isotopic Evidence for Major Mass Transfer between Mafic Enclaves and Felsic Magma. Chemical Geology, 92(1-3): 135-152. https://doi.org/10.1016/0009-2541(91)90053-t [23] Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710025 [24] Hu, D. G., 2005. SHRIMP Zircon U-Pb Age and Nd Isotopic Study on the Nyainqêntanglha Group in Tibet. Science in China (Series D), 48(9): 1377. https://doi.org/10.1360/04yd0183 [25] Jiang, Y. H., Jin, G. D., Liao, S. Y., et al., 2010. Geochemical and Sr–Nd–Hf Isotopic Constraints on the Origin of Late Triassic Granitoids from the Qinling Orogen, Central China: Implications for a Continental Arc to Continent–Continent Collision. Lithos, 117(1-4): 183-197. https://doi.org/10.1016/j.lithos.2010.02.014 [26] Jiang, Y. H., Ling, H. F., Jiang, S. Y., et al., 2005. Petrogenesis of a Late Jurassic Peraluminous Volcanic Complex and Its High-Mg, Potassic, Quenched Enclaves at Xiangshan, Southeast China. Journal of Petrology, 46(6): 1121-1154. https://doi.org/10.1093/petrology/egi012 [27] Johnston, A. D., Wyllie, P. J., 1988. Interaction of Granitic and Basic Magmas: Experimental Observations on Contamination Processes at 10 kbar with H2O. Contributions to Mineralogy and Petrology, 98(3): 352-362. https://doi.org/10.1007/bf00375185 [28] Kumar, S., Rino, V., 2006. Mineralogy and Geochemistry of Microgranular Enclaves in Palaeoproterozoic Malanjkhand Granitoids, Central India: Evidence of Magma Mixing, Mingling, and Chemical Equilibration. Contributions to Mineralogy and Petrology, 152(5): 591-609. https://doi.org/10.1007/s00410-006-0122-3 [29] Lesher, C. E., 1994. Kinetics of Sr and Nd Exchange in Silicate Liquids: Theory, Experiments, and Applications to Uphill Diffusion, Isotopic Equilibration, and Irreversible Mixing of Magmas. Journal of Geophysical Research: Solid Earth, 99(B5): 9585-9604. https://doi.org/10.1029/94jb00469 [30] Li, Z.L., Yang, J.S., Li, T.F., et al., 2019. Helium Isotopic Composition of the Songduo Eclogites in the Lhasa Terrane, Tibet: Information from the Deep Mantle. Journal of Earth Science, 30(3): 563-570. https://doi.org/10.1007/s12583-019-1226-9 [31] Liu, L., Qiu, J. S., Li, Z., 2013. Origin of Mafic Microgranular Enclaves (MMEs) and Their Host Quartz Monzonites from the Muchen Pluton in Zhejiang Province, Southeast China: Implications for Magma Mixing and Crust-Mantle Interaction. Lithos, 160-161: 145-163. https://doi.org/10.1016/j.lithos.2012.12.005 [32] Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [33] Ludwig, K. R., 2003. Users Manualf or Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [34] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101 < 0635:tdog > 2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [35] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [36] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745 [37] Qu, Y.G., Wang, Y.S., Duan, J.X., et al., 2002. The People's Republic of China Regional Geological Report 1:250 000 Duoba Sheet. China University of Geosciences Press, Wuhan (in Chinese). [38] Shellnutt, J. G., Jahn, B. M., Dostal, J., 2010. Elemental and Sr–Nd Isotope Geochemistry of Microgranular Enclaves from Peralkaline A-Type Granitic Plutons of the Emeishan Large Igneous Province, SW China. Lithos, 119(1-2): 34-46. https://doi.org/10.1016/j.lithos.2010.07.011 [39] Shi, R. D., Yang, J. S., Xu, Z. Q., et al., 2008. The Bangong Lake Ophiolite (NW Tibet) and Its Bearing on the Tectonic Evolution of the Bangong-Nujiang Suture Zone. Journal of Asian Earth Sciences, 32(5-6): 438-457. https://doi.org/10.1016/j.jseaes.2007.11.011 [40] Slaby, E., Martin, H., 2008. Mafic and Felsic Magma Interaction in Granites: The Hercynian Karkonosze Pluton (Sudetes, Bohemian Massif). Journal of Petrology, 49(2): 353-391. https://doi.org/10.1093/petrology/egm085 [41] Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu–Hf and U–Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 [42] Sun, M., Chen, W., Qu, X.M., et al., 2018. Petrogenesis of the Late Cretaceous Jiangba Volcanic Rocks and Its Indications for the Thinning of the Thickened Crust in Xiongmei Area, Tibet. Earth Science, 43(9):3234-3251 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201809022 [43] Sun, G. M., Li, X. P., Duan, W. Y., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5): 1026-1039. https://doi.org/10.1007/s12583-018-0854-9 [44] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [45] Vernon, R. H., 1984. Microgranitoid Enclaves in Granites-Globules of Hybrid Magma Quenched in a Plutonic Environment. Nature, 309(5967): 438-439. https://doi.org/10.1038/309438a0 [46] White, R. V., Tarney, J., Kerr, A. C., et al., 1999. Modification of an Oceanic Plateau, Aruba, Dutch Caribbean: Implications for the Generation of Continental Crust. Lithos, 46(1): 43-68. https://doi.org/10.1016/s0024-4937(98)00061-9 [47] Yang, T.L., Jiang, S.Y., 2015. Petrogenesis of Intermediate-Felsic Intrusive Rocks and Mafic Microgranular Enclaves (MMEs) from Dongleiwan Deposit in Jiurui Ore District, Jiangxi Province: Evidence from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes. Earth Science, 40(12):2002-2030 (in Chinese with English abstract). [48] Zhang, L.L., Zhu, D.C., Zhao, Z.D., et al., 2011. Early Cretaceous Granitoids in Xainza, Tibet:Evidence of Slab Break-off. Acta Petrologica Sinica, 27(7):1938-1948 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107003 [49] Zhang, K. J., 2004. Secular Geochemical Variations of the Lower Cretaceous Siliciclastic Rocks from Central Tibet (China) Indicate a Tectonic Transition from Continental Collision to Back-Arc Rifting. Earth and Planetary Science Letters, 229(1-2): 73-89. https://doi.org/10.1016/j.epsl.2004.10.030 [50] Zhang, K. J., Li, Q. H., Yan, L. L., et al., 2017. Geochemistry of Limestones Deposited in Various Plate Tectonic Settings. Earth-Science Reviews, 167: 27-46. https://doi.org/10.1016/j.earscirev.2017.02.003 [51] Zhang, K. J., Xia, B., Zhang, Y. X., et al., 2014. Central Tibetan Meso-Tethyan Oceanic Plateau. Lithos, 210-211: 278-288. https://doi.org/10.1016/j.lithos.2014.09.004 [52] Zhang, K. J., Zhang, Y. X., Tang, X. C., et al., 2012. Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision. Earth-Science Reviews, 114(3-4): 236-249. https://doi.org/10.1016/j.earscirev.2012.06.001 [53] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geological Journal of China Universities, 18(1):1-15 (in Chinese with English abstract). [54] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002 [55] Zhu, D. C., Zhao, Z. D., Niu, Y., et al., 2011. Lhasa Terrane in Southern Tibet Came from Australia. Geology, 39(8): 727-730. https://doi.org/10.1130/g31895.1 [56] 侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10): 2595-2604. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200710025 [57] 曲永贵, 王永胜, 段建祥, 等, 2002.中华人民共和国区域地质调查报告1:250 000多巴幅.武汉:中国地质大学出版社. [58] 孙渺, 陈伟, 曲晓明, 等, 2018.西藏雄梅地区晚白垩世江巴组火山岩岩石成因及对加厚地壳减薄的指示.地球科学, 43(9):3234-3251. doi: 10.3799/dqkx.2018.146 [59] 杨堂礼, 蒋少涌. 2015.江西九瑞矿集区东雷湾矿区中酸性侵入岩及其铁镁质包体的成因:锆石U-Pb年代学、地球化学与Sr-Nd-Pb-Hf同位素制约.地球科学, 40(12):2002-2020. doi: 10.3799/dqkx.2015.179 [60] 张亮亮, 朱弟成, 赵志丹, 等, 2011.西藏申扎早白垩世花岗岩类:板片断离的证据.岩石学报, 27(7): 1938-1948. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107003 [61] 朱弟成, 赵志丹, 牛耀龄, 等, 2012.拉萨地体的起源和古生代构造演化.高校地质学报, 18(1): 1-15. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201201001 期刊类型引用(2)
1. Shi-mian Yu,Xu-dong Ma,Yan-chun Hu,Wei Chen,Qing-ping Liu,Yang Song,Ju-xing Tang. Post-subdution evolution of the Northern Lhasa Terrane, Tibet: Constraints from geochemical anomalies, chronology and petrogeochemistry. China Geology. 2022(01): 84-95 . 必应学术
2. 林彬,陈蕾,刘振宇,唐菊兴,邹兵,贺文. 石榴子石U-Pb精确测年对斑岩-矽卡岩型铜矿床成岩时限的制约——以西藏桑日铜矿为例. 地质学报. 2020(10): 2883-2892 . 百度学术
其他类型引用(4)
-
dqkx-45-1-17-Table1-3.pdf
-